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Abstract

We specify a dynamic model in which agents adjust their decisions toward higher

payoffs, subject to normal error. This process generates a probability distribution of

players’ decisions that evolves over time according to the Fokker–Planck equation. The

dynamic process is stable for all potential games, a class of payoff structures that

includes several widely studied games. In equilibrium, the distributions that determine

expected payoffs correspond to the distributions that arise from the logit function applied

to those expected payoffs. This ‘‘logit equilibrium’’ forms a stochastic generalization

of the Nash equilibrium and provides a possible explanation of anomalous laboratory

data.
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I. Introduction

Small errors and shocks may have offsetting effects in some economic con-
texts, in which case there is not much to be gained from an explicit analysis
of stochastic elements. In other contexts, a small amount of randomness can
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have a large effect on equilibrium behavior.1 Regardless of whether ‘‘errors’’
or ‘‘trembles’’ are due to random preference shocks, experimentation or actual
mistakes in judgment, their effect can be particularly important when players’
payoffs are quite sensitive to others’ decisions, e.g. when payoffs are discon-
tinuous as in auctions, or highly interrelated as in coordination games. Nor do
errors cancel out when the Nash equilibrium is near a boundary of the set of
feasible actions and noise pushes actions towards the interior, as in a public
goods contribution game where the Nash equilibrium is at zero contributions
(full free riding). Errors are more likely when payoff differences across
alternatives are small, so the consequences of mistakes are minor. For exam-
ple, when managers are weakly motivated by profits to owners, they may not
exert much effort to find the optimal action.

Stochastic elements have been incorporated successfully into a wide array
of economic theories. These stochastic elements have been typically
assumed to be driven by exogenous shocks.2 Noise that is endogenous to
the system can arise from decision errors, which are endogenously affected
by the costs of making errors in that a more costly mistake is less likely to be
made. Despite Simon’s (1957) early work on modeling bounded rationality,
the incorporation of noise in the analysis of economic games is relatively
recent. Rosenthal (1989) and McKelvey and Palfrey (1995) propose noisy
generalizations of the standard Nash equilibrium.3 McKelvey and Palfrey’s
‘‘quantal response equilibrium’’ allows a wide class of probabilistic choice
rules to be substituted for perfect maximizing behavior in an equilibrium
context. Other economists have introduced noise into models of learning and
evolutionary adjustment; see for instance Foster and Young (1990), Fudenberg
and Harris (1992), Kandori et al. (1993), Binmore, Samuelson and Vaughan
(1995), and Chen, Friedman and Thisse (1997). In particular, Foster and
Young (1990) and Fudenberg and Harris (1992) use a Brownian motion
process, similar to the one specified in Section II.

Our goal in this paper is to provide a unified approach to equilibrium and
evolutionary dynamics for a class of models with continuous decisions. The
dynamic model is based on an assumption that decisions are changed locally
in the direction of increasing payoff, subject to some randomness. Specifi-
cally, we propose a model of noisy adjustment to current conditions that, in
equilibrium, yields a steady-state probability distribution of decisions for
each player. Our modeling approach is inspired by two strands of thought,

1For example, in evolutionary models of coordination a small mutation rate may prevent the

system from getting stuck in an equilibrium that is risk dominated; see e.g. Kandori, Mailath

and Rob (1993) and Young (1993). Similarly, a small amount of noise or ‘‘trembles’’ can be

used to rule out certain Nash equilibria; see Selten (1975).
2 For instance, real business cycle models and much econometric work make this assumption.
3 See Smith and Walker (1993) and Smith (1997) for an alternative approach.

# The editors of the Scandinavian Journal of Economics 2004.
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directional adaptive behavior and randomness, both of which are grounded
in early writings on bounded rationality.

Selten and Buchta’s (1998) ‘‘learning direction theory’’ postulates that
players are more likely to shift decisions in the direction of a best response to
recent conditions. They show that such behavior was observed in an experi-
mental trial of a first-price auction. However, Selten and Buchta (1998) do
not expressly model the rate of adaption. One contribution of this paper is to
operationalize learning direction theory by specifying an adjustment process.
Our model is also linked to the literature on evolutionary game theory in
which strategies with higher payoffs become more widely used. Such evolu-
tion can be driven by increased survival and fitness arguments with direct
biological parallels, as in e.g. Foster and Young (1990), or by more cognitive
models in which agents learn to use strategies that have worked better for
themselves, as in e.g. Roth and Erev (1995) and Erev and Roth (1998), or in
which they imitate successful strategies used by others, as in Vega-Redondo
(1997) and Rhode and Stegeman (2001). An alternative to imitation and
adaptation has been to assume that agents move in the direction of best
responses to others’ decisions. This is the approach we take.4

In addition to ‘‘survival of the fittest’’, biological evolution is driven by
mutation of existing types, which is the second element that motivates our
work. In the economics literature, evolutionary mutation is often specified as a
fixed ‘‘epsilon’’ probability of switching to a new decision that is chosen
randomly from the entire feasible set; see the discussion in Kandori (1997)
and the references therein. Instead of mutation via new types entering a
population, we allow existing individuals to make mistakes with the prob-
ability of a mistake being inversely related to its severity; see also Blume
(1993, 1997), Young (1998) and Hofbauer and Sandholm (2002). The assump-
tion of error-prone behavior can be justified by the apparent noisiness of
decisions made in laboratory experiments with financially motivated subjects.
To combine the two strands of thought, we analyze a model of noisy adjust-
ment in the direction of higher payoffs. The payoff component is more
important when the payoff gradient is steep, while the noise component is
more important when the payoff gradient is relatively flat. The main intuition
behind this approach can be illustrated in the simple case of only two
decisions, 1 and 2, with associated payoffs p1 and p2, where the probability

4Models of imitation and reinforcement-learning are probably more likely to yield good

predictions in noisy, complex situations where players do not have a clear understanding of

how payoffs are determined, but rather can see clearly their own and others’ payoffs and

decisions. Best-response and more forward-looking behavior may be more likely in situations

where the nature of the payoff functions is clearly understood. For example, in a Bertrand

game in which the lowest-priced firm makes all sales, it is implausible that firms would be

content merely to copy the most successful (low) price.

# The editors of the Scandinavian Journal of Economics 2004.
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of switching from 1 to 2 is increasing in the payoff difference, p2� p1. An
approach based on payoff differences (or gradients in the continuous case) has
the property that adding a constant to all payoffs has no effect, while scaling
up the payoffs increases the speed at which decisions migrate toward high-
payoff decisions. The belief that ‘‘noise’’ is reduced when payoffs are scaled
up is supported by some laboratory experiments, e.g. the reduction in the rate
of ‘‘irrational rejections’’ of low offers in ultimatum games as the amount of
money being divided rises from $20 to $400; see List and Cherry (2000).

The next step in the analysis is to translate this noisy directional adjust-
ment into an operational description of the dynamics of strategic choice. For
this step, we use a classic result from theoretical physics, namely the
Fokker–Planck equation that describes the evolution of a macroscopic sys-
tem that is subject to microscopic fluctuations (e.g. the dispersion of heat in
some medium). The state of the system in our model is a vector of the
individual players’ probability distributions over possible decisions. The
Fokker–Planck equation shows how the details of the noisy directional
adjustment rule determine the evolution of this vector of probability dis-
tributions. These equations thus describe behavioral adjustment in a stochas-
tic game, in which the relative importance of stochastic elements is
endogenously determined by payoff derivatives.

The prime interest in the dynamical system concerns its stability and
steady state (a vector of players’ decision distributions that does not change
over time). The adjustment rule is particularly interesting in that it yields a
steady state in which the distributions that determine expected payoffs are
those that are generated by applying a logit probabilistic choice rule to these
expected payoffs. Our approach derives this logit equilibrium, as in McKelvey
and Palfrey (1995), from a completely different perspective than its usual
roots. We prove stability of the adjustment rule for an important class
of games, i.e. ‘‘potential games’’ for which the Nash equilibrium can be
found by maximizing some function of all players’ decisions. In particular,
the Liapunov function that is maximized in the steady state of our model is
the expected value of the potential function plus the standard measure of
entropy in the system, weighted by an error parameter.

The dynamic model and its steady state are presented in Section II.
Section III contains an analysis of global stability for an interesting class
of games, i.e., potential games, which include public goods, oligopoly and
two-person matrix games. Section IV concludes.

II. Evolution and Equilibrium with Stochastic Errors

We specify a stochastic model in continuous time to describe the interaction of
a finite number of players. In our model, players tend to move towards
decisions with higher expected payoffs, but such movements are subject to

# The editors of the Scandinavian Journal of Economics 2004.
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random shocks. At any point in time, the state of the system is characterized by
probability distributions of players’ decisions. The steady-state equilibrium is
a fixed point at which the distributions that determine expected payoffs have
converged to distributions of decisions that are based on those expected pay-
offs. This stochastic equilibrium reflects bounded rationality in that the optimal
decision is not always selected, although decisions with higher payoffs are
more likely to be chosen. The degree of imperfection in rationality is
parameterized in a manner that yields the standard Nash equilibrium as a
limiting case. The specific evolutionary process we consider shows an intuitive
relationship between the nature of the adjustment and the probabilistic choice
structure used in the equilibrium. In particular, with adjustments that are
proportional to marginal payoffs plus normal noise, the steady state has a
logit structure.

There are n� 2 players that make decisions in continuous time. At time t,
player i¼ 1, . . . , n selects an action xi(t) 2 (xL, xH). Since actions will be
subject to random shocks, behavior will be characterized by probability dis-
tributions. Let Fi(x, t) be the probability that player i chooses an action less
than or equal to x at time t. Similarly, let the vector of the n� 1 other players’
decisions and probability distributions be denoted by x�i(t) and F�i(x�i, t),
respectively. The instantaneous expected payoff for player i at time t depends
on the action taken and on the distributions of others’ decisions:

peiðxiðtÞ; tÞ ¼
ð
piðxiðtÞ;x�iÞ dF�iðx�i; tÞ; i ¼ 1; . . . ; n: ð1Þ

We assume that payoffs, and hence expected payoffs, are bounded from
above. In addition, we assume that expected payoffs are differentiable in xi(t)
when the distribution functions are. The latter condition is ensured when the
payoffs pi(xi, x�i) are continuous.5

In a standard evolutionary model with replicator dynamics, the assump-
tion is that strategies that do better than the population average against the
distribution of decisions become more frequent in the population. The idea
behind such a ‘‘population game’’ is that the usefulness of a strategy is
evaluated in terms of how it performs against a distribution of strategies in
the population of other players. We use the population game paradigm in a
similar manner by assuming that the attractiveness of a pure strategy is based
on its expected payoff given the distribution of others’ decisions in the

5Continuity of the payoffs is sufficient but not necessary. For instance, in a first-price auction

with prize value V, payoffs are discontinuous, but expected payoffs, (V� xi)pj 6¼iFj(xi), are

twice differentiable when the Fj are twice differentiable. More generally, the expected payoff

function will be twice differentiable even when the payoffs pi(xi, x�i) are only piece-wise

continuous.

# The editors of the Scandinavian Journal of Economics 2004.
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population. To capture the idea of local adjustment to better outcomes, we
assume that players move in the direction of increasing expected payoff,
with the rate at which players change increasing in the marginal benefit of
making that change.6 This marginal benefit is denoted by pei

0ðxiðtÞ; tÞ, where
the prime denotes the partial derivative with respect to xi(t). However,
individuals may make mistakes in the calculation of expected payoff, or
they may be influenced by non-payoff factors. Therefore, we assume that the
directional adjustments are subject to error, which we model as an additive
disturbance, wi(t), weighted by a variance parameter si:

7

dxiðtÞ ¼ pei
0ðxiðtÞ; tÞdtþ �i dwiðtÞ; i ¼ 1; . . . ; n: ð2Þ

Here wi(t) is a standard Wiener (or white noise) process that is assumed to be
independent across players and time. Essentially, dxi/dt equals the slope of
the individual’s expected payoff function plus a normal error with zero mean
and unit variance.

The deterministic part of the local adjustment rule (2) indicates a ‘‘weak’’
form of feedback in the sense that players react to the distributions of others’
actions (through the expected payoff function), rather than to the actions
themselves. This formulation is motivated by laboratory experiments that
use a random matching protocol. Random matching causes players’ observa-
tions of others’ actions to keep changing even when behavior has stabilized.
When players gain experience they will take this random matching effect
into account and react to the ‘‘average observed decision’’ or the distribution
of decisions rather than to the decision of their latest opponent.

The stochastic part of the local adjustment rule in (2) captures the idea
that such adaptation is imperfect and that decisions are subject to error. It is
motivated by observed noise in laboratory data where adjustments are often
unpredictable, and subjects sometimes experiment with alternative decisions.
In particular, ‘‘errors’’ or ‘‘trembles’’ may occur because current conditions
are not known precisely, expected payoffs are only estimated, or decisions
are affected by factors beyond the scope of current expected payoffs, e.g.
emotions like curiosity, boredom, inertia or desire to change. The random
shocks in (2) capture the idea that players may use heuristics or ‘‘rules of
thumb’’ to respond to current payoff conditions. We assume that these
responses are, on average, proportional to the correct expected payoff
gradients, but that calculation errors, extraneous factors and imperfect

6 Friedman and Yellin (1997) show that when adjustment costs are quadratic in the speed of

adjustment, it is optimal for players to alter their actions partially and in proportion to the

gradient of expected payoff.
7 See Basov (2001) for a multi-dimensional generalization of (2) and a careful discussion of the

boundary conditions needed to ensure that no probability mass escapes (xL, xH).

# The editors of the Scandinavian Journal of Economics 2004.
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information require that a stochastic term be appended to the deterministic part
of (2). Taken together, the two terms in (2) simply imply that a change in the
direction of increasing expected payoff is more likely, and that the magnitude
of the change is positively correlated with the expected payoff gradient.

The adjustment rule (2) translates into a differential equation for the
distribution function of decisions, Fi(x, t). This equation will depend on
the density fi(x, t) corresponding to Fi(x, t), and on the slope, pei

0ðx; tÞ, of
the expected payoff function. It is a well-known result from theoretical
physics that the stochastic adjustment rule (2) yields the Fokker–Planck
equation for the distribution function.8

Proposition 1. The noisy directional adjustment process (2) yields the

Fokker–Planck equation for the evolution of the distributions of decisions:

@ Fiðx; tÞ
@t

¼ �pei
0ðx; tÞ fiðx; tÞ þ �i fi

0ðx; tÞ; i ¼ 1; . . . ; n; ð3Þ

where �i ¼ �2
i =2.

Binmore et al. (1995) use the Fokker–Planck equation to model the evolution
of choice probabilities in 2� 2 matrix games. Instead of using the expected-
payoff derivative as we do in (2), they use a non-linear genetic-drift function.
Friedman and Yellin (1997) consider a one-population model in which all
players get the same payoff from a given vector of actions, which they call
‘‘games of common interest’’. (This is a subset of the class of potential
games discussed in the next section.) They start out with the assumption that
the distribution evolves according to (3), but without the error term (i.e., vi¼ 0).
This deterministic version of Fokker–Planck is used to show that behavior
converges to a (local) Nash equilibrium in such games.

A derivation of the Fokker–Planck equation is shown in theAppendix. Existence
of a (twice differentiable) solution to the Fokker–Planck equation is demonstrated in
most textbooks on stochastic processes; see e.g. Smoller (1994) and Gihman and
Skohorod (1972).Notice that there is a separate equation for eachplayer i¼ 1, . . . ,n,
and that the individual Fokker–Planck equations are interdependent only through the
expected payoff functions. In contrast, replacing the expected payoff in (2) by the
instantaneous payoff, p(x1(t), . . . , xn(t)), results in a single Fokker–Planck equation

8 This result has been derived independently by a number of physicists, including Einstein

(1905), and the mathematician Kolmogorov (1931). The first term on the RHS of (3) is known

as a drift term, and the second term is a diffusion term. The standard example of pure diffusion

without drift is a small particle in a suspension of water; in the absence of external forces the

particle’s motion is completely determined by random collisions with water molecules

(Brownian motion). A drift term is introduced, for instance, when the particle is charged and

influenced by an electric field.

# The editors of the Scandinavian Journal of Economics 2004.
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that describes the evolution of the joint density of x1(t), . . . ,xn(t). This formulation
might be relevantwhen the sameplayers repeatedly interact as in experimentswith a
fixed-matching protocol. Most experiments, however, employ a random-matching
protocol inwhich case the population-gameapproachdiscussedhere ismore natural.

The Fokker–Planck equation (3) has a very intuitive economic interpreta-
tion. First, players’ decisions tend to move in the direction of greater payoff,
and a larger payoff derivative induces faster movement. In particular, when
payoff is increasing at some point x, lower decisions become less likely,
decreasing Fi(x, t). The rate at which probability mass crosses over at x
depends on the density at x, which explains the �pei

0ðx; tÞfiðx; tÞ term on the
RHS of (3). The second term, vifi

0, reflects aggregate noise in the system
(due to intrinsic errors in decision-making), which causes the density to
‘‘flatten out’’. Locally, if the density has a positive slope at x, then flattening
moves mass toward lower values of x, increasing Fi(x, t), and vice versa, as
indicated by the second term on the RHS of equation (3).

Since vi ¼ �2
i =2, the variance coefficient vi in (3) determines the importance

of errors relative to payoff-seeking behavior for individual i. First consider
the limiting case vi¼ 0. If behavior in (3) converges, it must be the case that
pei

0ðxÞfiðxÞ ¼ 0, which is the necessary condition for an interior Nash equi-
librium: either the necessary condition for payoff maximization is satisfied at
x, or else the density of decisions is zero at x. As vi goes to infinity in (3),
the noise effect dominates and the Fokker–Planck equation tends to @Fi/
@t¼ vi@

2Fi/@x
2, which is equivalent to the ‘‘heat equation’’ that describes how

heat spreads out uniformly in some medium.9 In this limit, the steady state of
(3) is a uniform density with fi

0 ¼ 0.
In a steady state of the process in (3), the RHS is identically zero, which

yields the equilibrium conditions:

fi
0ðxÞ ¼ pei

0ðxÞ fiðxÞ= �i; i ¼ 1; . . . ; n; ð4Þ

where the t arguments have been dropped since these equations pertain to a
steady state. These equations can be simplified by dividing both sides by
fi(x) and integrating, to obtain:

fiðxÞ ¼
expðpei ðxÞ= �iÞÐxH

xL

expðpei ðsÞ= �iÞds
; i ¼ 1; . . . ; n; ð5Þ

where the integral in the denominator is a constant, independent of x, which
ensures that the density integrates to one.

9 The heat equation @fi/@t¼ vi@
2fi/@x

2 follows by differentiating both sides with respect to x.

# The editors of the Scandinavian Journal of Economics 2004.
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The formula in (5) is a continuous analogue to the logit probabilistic
choice rule. Since the expected payoffs on the RHS depend on the distribu-
tions of the other players’ actions (see (1)), the equations in (5) are not
explicit solutions. Instead, these equations constitute equilibrium conditions

for the steady-state distribution: the probability distributions that determine
expected payoffs must match the choice distributions determined by the logit
formula in (5). In the steady-state equilibrium these conditions are simulta-
neously satisfied. The steady-state equilibrium is a continuous version of the
quantal response equilibrium proposed by McKelvey and Palfrey (1995).10

Thus we generate a logit equilibrium as a steady-state from a more primitive
formulation of noisy directional learning, instead of imposing the logit form
as a model of decision error. To summarize:

Proposition 2. When players adjust their actions in the direction of higher

payoff, but are subject to normal error as in (2), then any steady state of the

Fokker–Planck equation (3) constitutes a logit equilibrium as defined by (5).

This derivation of the logit model is very different from the usual deriva-
tions. Luce (1959) uses an axiomatic approach to tie down the form of
choice probabilities.11 In econometrics, the logit model is typically derived
from a ‘‘random-utility’’ approach.12 Both of these derivations are static in

10 Rosenthal (1989) proposed a similar equilibrium with endogenously determined

distributions of decisions, although he used a linear probabilistic choice rule instead of the

logit rule. McKelvey and Palfrey (1995) consider a more general class of probabilistic choice

rules, which includes the logit formula as a special case. Our model with continuous decisions

is similar to the approach taken in Lopez (1995).
11 Luce (1959) postulated that decisions satisfy a ‘‘choice axiom’’, which implies that the ratio

of the choice probabilities for two decisions is independent of the overall choice set containing

those two choices (the independence of irrelevant alternatives property). In that case, he shows

that there exist ‘‘scale values’’ ui such that the probability of choosing decision i is ui/Sjuj. The

logit model follows when ui¼ exp(pi/v).
12 This footnote presents the random-utility derivation of the logit choice rule for a finite

number of decisions. Suppose there are m decisions, with expected payoffs u1, . . . , um. A

probabilistic discrete choice model stipulates that a person chooses decision k if:

ukþ ek> uiþ ei, for all i 6¼ k, where the ei are random variables. The errors allow the

possibility that the decision with the highest payoff will not be selected, and the probability

of such a mistake depends on both the magnitude of the difference in the expected payoffs and

on the ‘‘spread’’ in the error distribution. The logit model results from the assumption that the

errors are i.i.d. and double-exponentially distributed. The probability of choosing decision k is

then exp(uk/v)/Siexp(ui/v), where v is proportional to the standard deviation of the error

distribution. There are two alternative interpretations of the ei errors: they can either

represent mistakes in the calculation or perception of expected payoffs, or they can represent

unobservable preference shocks. These two interpretations are formally equivalent, although

one embodies bounded rationality and the other implies rational behavior with respect to

unobserved preferences. See Anderson, de Palma and Thisse (1992, Ch. 2) for further

discussion and other derivations of the logit model.

# The editors of the Scandinavian Journal of Economics 2004.
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nature. Here the logit model results from the behavioral assumption of
directional adjustment with normal error.

Some properties of the equilibrium distributions can be determined from
the structure of (4) or (5), independent of the specific game being consid-
ered. Equation (5) specifies the choice density to be proportional to an
exponential function of expected payoff, so that actions with higher payoffs
are more likely to be chosen, and the local maxima and minima of the
equilibrium density will correspond to local maxima and minima of the
expected payoff function. The error parameter determines how sensitive
the density is to variations in expected payoffs. As the error parameter
goes to infinity, the slope of the density in (4) goes to zero, and so the
density in (5) becomes uniform, i.e., totally random and unaffected by payoff
considerations. Conversely, as the error parameter becomes small, the den-
sity in (5) will place more and more mass on decisions with high expected
payoffs. In the literature on stochastic evolution, it is common to proceed
directly to the limiting case as the amount of noise goes to zero.13 This limit
is not our primary interest, for two reasons. First, econometric analysis of
data from laboratory experiments yields error parameter estimates that are
significantly different from zero, which is the null hypothesis corresponding
to a Nash equilibrium. Second, the limiting case of perfect rationality is
generally a Nash equilibrium, and our theoretical analysis was originally
motivated as an attempt to explain data patterns that are consistent with
economic intuition but which are not predicted by a Nash equilibrium. As we
have shown elsewhere, the (static) logit model (5) yields comparative static
results that conform with both economic intuition and data patterns from
laboratory experiments, but are not predicted by the standard Nash equili-
brium; see Anderson, Goeree and Holt (1998a, b, 2001) and Capra, Goeree,
Gomez and Holt (1999). The dynamic adjustment model presented here
gives a theoretical justification for using the logit equilibrium to describe
decisions when behavior has stabilized, e.g. in the final periods of laboratory
experiments.

To summarize the main result of this section, the steady-state distributions
of decisions that follow from the adjustment rule (2) satisfy the conditions that
define a logit equilibrium. Therefore, when the dynamical system described by
(3) is stable, the logit equilibrium results in the long run when players adjust
their actions in the direction of higher payoff (directional learning), but are
subject to error. In the next section, we use Liapunov function methods to
prove stability and existence for the class of potential games.

13 One exception is Binmore and Samuelson (1997), who consider an evolutionary model in

which the mistakes made by agents (referred to as ‘‘muddlers’’) are not negligible. At the

aggregate level, however, the effect of noise is washed out when considering the limit of an

infinite population.

# The editors of the Scandinavian Journal of Economics 2004.
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III. Stability Analysis

So far, we have shown that any steady state of the Fokker–Planck equation
(3) is a logit equilibrium. We now consider the dynamics of the system (3)
and characterize sufficient conditions for a steady state to be attained in the
long run. Specifically, we use Liapunov methods to prove stability for a class
of games that includes some widely studied special cases. A Liapunov
function is non-decreasing over time and has a zero time derivative only
when the system has reached an equilibrium steady state. The system is
(locally) stable when such a function exists.14

Although our primary concern is the effect of endogenous noise, it is
instructive to begin with the special case in which there is no decision error
and all players use pure strategies. Then it is natural to search for a function
of all players’ decisions that will be maximized (at least locally) in a Nash
equilibrium. In particular, consider a function, V(x1, . . . , xn), with the prop-
erty @V/@xi¼ @pi/@xi for i¼ 1, . . . , n. When such a function exists, Nash
equilibria can be found by maximizing V. The V(�) function is called the
potential function, and games for which such a function exists are known as
potential games; see Monderer and Shapley (1996).15

The usefulness of the potential function is not just that it is (locally)
maximized at a Nash equilibrium. It also provides a direct tool to prove
equilibrium stability under the directional adjustment hypothesis in (2).
Indeed, in the absence of noise, the potential function itself is a Liapunov
function; see also Slade (1994). This can be expressed as:

dV

dt
¼

Xn
i¼1

@V

@ xi

dxi

dt
¼

Xn
i¼1

@ pi
@ xi

dxi

dt
¼

Xn
i¼1

ð@ pi=@ xiÞ2 � 0; ð6Þ

where the final equality follows from the directional adjustment rule (2) with
no noise, i.e., �i¼ 0.16 Thus the value of the potential function is strictly
increasing over time unless all payoff derivatives are zero, which is a
necessary condition for an interior Nash equilibrium. The condition that
dV/dt¼ 0 need not generate a Nash equilibrium: the process might come
to rest at a local maximum of the potential function that corresponds to a
local Nash equilibrium from which large unilateral deviations may still be
profitable.

14 See e.g. Kogan and Soravia (2002) for an application of Liapunov function techniques to

infinite dimensional dynamical systems.
15 Rosenthal (1973) first used a potential function to prove the existence of a pure-strategy

Nash equilibrium in congestion games.
16 This type of deterministic gradient-based adjustment has a long history; see Arrow and

Hurwicz (1960).
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Our primary interest concerns noisy decisions, so we work with the
expected value of the potential function. It follows from (1) that the partial
derivatives of the expected value of the potential function correspond to the
partial derivatives of the expected payoff functions:

pei
0ðxi; tÞ ¼

@

@ xi

ð
Vðxi; x�iÞ dF�iðx�i; tÞ; i ¼ 1; . . . ; n: ð7Þ

Again, the intuitive idea is to use something that is maximized at a logit
equilibrium to construct a Liapunov function, i.e., a function whose time
derivative is non-negative and only equal to zero at a steady state. When
vi> 0 for at least one player i, then the steady state is not generally a Nash
equilibrium, and the potential function must be augmented to generate an
appropriate Liapunov function. Look again at the Fokker–Planck equation (3);
the first term on the RHS is zero at an interior maximum of expected payoff, and
the fi

0ðx; tÞ term is zero for a uniform distribution. Therefore, we want to
augment the Liapunov function with a term that is maximized by a uniform
distribution. Consider the standard measure of noise in a stochastic system,
entropy, which is defined as �

Pn
i¼1

R
fi logðfiÞ. It can be shown that this

measure is maximized by a uniform distribution, and that entropy is reduced as
the distribution becomes more concentrated. The Liapunov function we seek is
constructed by adding entropy to the expected value of the potential function:

L ¼
ðxH
xL

� � �
ðxH
xL

Vðx1; . . . ; xnÞ f1ðx1; tÞ . . . fnðxn; tÞ dx1 . . . dxn

�
Xn
i¼1

�i

ðxH
xL

fiðxi; tÞ logðfiðxi; tÞÞ dxi:

ð8Þ

The vi parameters determine the relative importance of the entropy terms in (8),
which is not surprising given that vi is proportional to the variance of the
Wiener process in player i’s directional adjustment rule (2). Since entropy is
maximized by a uniform distribution (i.e., purely random decision-making), it
follows that decision distributions that concentrate probability mass on higher-
payoff actions will have lower entropy. Therefore, one interpretation of the role
of the entropy term in (8) is that, if the vi parameters are large, then entropy
places a high ‘‘cost’’ of concentrating probability on high-payoff decisions.17

17 The connection between entropy and the logit choice probabilities is well established in

physics and economics. For example, Anderson et al. (1992) showed that logit demands are

generated from a representative consumer with a utility function that has an entropic form.
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We prove that the dynamical system described by (3) converges to a logit
equilibrium, by showing that the Liapunov function (8) is non-decreasing
over time.18

Proposition 3. For the class of potential games, behavior converges to a

logit equilibrium when players adjust their actions in the direction of higher

payoff, subject to normal error as in (2).

Proof: In the Appendix we show that the Liapunov function is non-
decreasing over time; by taking the time derivative of the Liapunov function,
partially integrating, and using the Fokker–Planck equation, we can express
this time derivative in a form that is analogous to (6)

dL

dt
¼

Xn
i¼1

ðxH
xL

ð@ Fiðxi; tÞ=@tÞ2

fiðxi; tÞ
dxi � 0: ð9Þ

The entropy term in (8) is maximized by the uniform densities fi(x, t)¼
1/(xH� xL), i¼ 1, . . . , n. It follows from this observation that the maximum
entropy is given by log(xH� xL) �ivi, which is finite. The expected value of
the potential function is bounded from above since, by assumption, expected
payoffs are. Therefore, the Liapunov function, which is the sum of expected
potential and entropy, is bounded from above. Since L is non-decreasing
over time for any potential game, we must have dL/dt ! 0 as t ! 1, so
dFi/dt ! 0 in this limit. By (3) this yields the logit equilibrium conditions in
(4). The solutions to these equilibrium conditions are the logit equilibria
defined by (5). Q.E.D.

When there are multiple logit equilibria, the equilibrium attained under
the dynamical process (3) is determined by the initial distributions Fi(x, 0).
In other words, the dynamical process (3) is not ergodic. This follows because,
with multiple equilibria, the Liapunov function (8) has multiple local maxima
and minima, and since the Liapunov function cannot decrease over time any

of these extrema are necessarily rest points of the dynamical process.
We now show that (local) maxima of the Liapunov function correspond to

(locally) stable logit equilibria; see Anderson et al. (2001) and Hofbauer and
Sandholm (2002, 2003).1

18 The notion of convergence used here is ‘‘weak convergence’’ or ‘‘convergence in

distribution’’: the random variable x(t) weakly converges to the random variable X if

limt!1Prob[x(t)� x]¼ Prob[X� x] for all x. Proposition 3 thus implies that the random

variable xi(t) defined in (2) weakly converges to a random variable that is distributed

according to a logit equilibrium distribution, for any starting point xi(0).

# The editors of the Scandinavian Journal of Economics 2004.
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Proposition 4. A logit equilibrium is locally (asymptotically) stable under the

process (3) if and only if it corresponds to a strict local maximum of the Liapunov

function in (8). When the logit equilibrium is unique, it is globally stable.

Proof: We first show that strict local maxima of the Liapunov function are
locally (asymptotically) stable logit equilibria. Let F*(x) denote a vector of
distributions that constitutes a logit equilibrium which corresponds to a strict
local maximum of the Liapunov function. Suppose that at F* the Liapunov
function attains the value L*. Furthermore, let U be the set of distributions in
the neighborhood of F* for which L�L*� e, where e> 0 is small. Since e
can be made arbitrarily small, we may assume that U contains no other
stationary points of L. Note from (9) that L is non-decreasing over time, so
no trajectory starting in U will ever leave it. Moreover, since F* is the only
stationary point of L inU, Proposition 3 implies that all trajectories starting inU
necessarily converge to F* in the limit t ! 1, i.e., F* is locally (asymptotic-
ally) stable. Hence, strict local maxima of L are locally stable logit equilibria.

Next, we prove that any locally (asymptotically) stable logit equilibrium,
F*, is a strict local maximum of L. Since F* is locally (asymptotically)
stable, there exists a local neighborhood U of F* that is invariant under the
process (3), and whose elements converge to F*. The Liapunov function is
strictly increasing along a trajectory starting from any distribution in U

(other than F* itself), so L necessarily attains a strict local maximum at
F*. Finally, when the logit equilibrium is unique, it corresponds to the
unique stationary point of L. Proposition 3 holds for any initial distribution,
so the logit equilibrium is globally stable. Q.E.D.

It follows from (9) that dFi/dt¼ 0 when the Liapunov function is (locally)
maximized, which, by (3) and (4), implies that a logit equilibrium is neces-
sarily reached. Recall that, in the absence of noise, a local maximum of the
Liapunov function does not necessarily correspond to a Nash equilibrium;
the system may come to rest at a point where ‘‘large’’ unilateral deviations
are still profitable; see Friedman and Yellin (1997). In contrast, with noise,
local maxima of the Liapunov function always produce a logit equilibrium in
which decisions with higher expected payoffs are more likely to be made. In
fact, even (local) minima of the Liapunov function correspond to such
equilibria, although they are unstable steady states of the dynamical system.

Propositions 3 and 4 do not preclude the existence of multiple locally
stable equilibria. In such cases, the initial conditions determine which
equilibrium will be selected. As shown in the proof of Proposition 4, if the
initial distributions are ‘‘close’’ to those of a particular logit equilibrium,
then that equilibrium will be attained under the dynamic process (3). The
2� 2 example presented at the end of this section illustrates the possibility of
multiple stable equilibria.

# The editors of the Scandinavian Journal of Economics 2004.
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Since the existence of potential functions is crucial to the results of
Proposition 3, we next discuss conditions under which such functions can
be found. A necessary condition for the existence of a potential function is
that @2pi/@xj@xi¼ @2pj/@xi@xj for all i, j, since both sides are equal to @2V/
@xi@xj. Hence, the existence of a potential function requires @2[pi� pj]/
@xj@xi¼ 0 for all i, j. Moreover, these ‘‘integrability’’ conditions are also
sufficient to guarantee existence of a potential function. It is straightforward
to show that payoffs satisfy the integrability conditions if and only if:
piðx1; . . . ; xnÞ ¼ pcðx1; . . . ; xnÞ þ �iðxiÞ þ jiðx�iÞ for i¼ 1, . . . ,n, where pc
is the same for players, hence it has no i subscript. To see that this class
of payoffs solves the integrability condition, note that the common part,
pc, cancels when taking the difference of pi and pj, and the player-
specific parts, �i and ji, vanish upon differentiation. If we define
Vðx1; . . . ;xnÞ ¼ pcðx1; . . . ;xnÞ þ

Pn
i¼1 �iðxiÞ, we can write the above pay-

offs pi as the sum of two components: a common component and a compo-
nent that only depends on others’ decisions

piðx1; . . . ; xnÞ ¼ Vðx1; . . . ; xnÞ þ �iðx�iÞ; i ¼ 1; . . . ; n: ð10Þ

where we have defined aiðx�iÞ ¼ jiðx�iÞ �
P

j 6¼i hjðxjÞ. The common part,
V, has no i subscript, and is the same function for all players, although it is
not necessarily symmetric in the xi. The individual part, ai(x�i), may differ
across players. The common part includes benefits or costs that are deter-
mined by one’s own decision, e.g. effort costs. The ai(x�i) term in (10) does
not affect the Nash equilibrium since it is independent of one’s own deci-
sion, e.g. others’ effort costs or gifts received from others. It follows from
this observation that the partial derivative of V(x1, . . . , xn) with respect to xi is
the same as the partial derivative of pi(x1, . . . , xn) with respect to xi for
i¼ 1, . . . , n, so V(�) is a potential function for this class of payoffs. Proposi-
tion 3 then implies that behavior converges to a logit equilibrium for this
class of games.
The payoff structure in (10) covers a number of important games. For

instance, consider a linear public goods game in which individuals are given
an endowment, o. If an amount xi is contributed to a public good, the player
earns o� xi for the part of the endowment that is kept. In addition, every
player receives a constant (positive) fraction m of the total amount contrib-
uted to the public good. Therefore, the payoff to player i is: pi¼o
� xiþmX, where X is the sum of all contributions including those of player
i. The potential for this game is: V(x)¼oþmX�Sixi, and ai(x�i)¼Sj 6¼ixj.
Another example is the minimum-effort coordination game, as in e.g. Bryant
(1983), for which: pi¼minj¼1 . . .N{xj}� cxi, where effort costs c 2 [0, 1].
Here, V(x)¼minj¼1 . . .N{xj}�Sicxi (see also Section IV). In both of these
applications the common part represents a symmetric production function,

# The editors of the Scandinavian Journal of Economics 2004.
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included once, minus the sum of all players’ effort costs. In previous work
on public goods and coordination games, we showed that the logit equilibrium
is unique; see Anderson et al. (1998b, 2001). Therefore, the directional adjust-
ment process studied here is globally stable for these games.

It is also straightforward to construct potential functions for many oligo-
poly models. Consider a Cournot oligopoly with n firms and linear demand,
so that pi¼ (a� bX) xi� ci(xi), where X is the sum of all outputs and ci(xi) is
firm i’s cost function. Since the derivative of firm i’s profit with respect to
its own output is given by @pi=@xi ¼ a� bX � bxi � ci

0, the potential
function is easily derived as: V ¼ aX � b=2X2 � b=2

P
i x

2
i �

P
i ciðxiÞ.

Some non-linear demand specifications can also be incorporated.
As a final example, consider the class of symmetric two-player matrix

games with two decisions:

Player 2
D1 D2

Player 1
D1 a, a b, c

D2 c, b d, d

Player i is characterized by a probability xi of choosing decision D1.
19 Thus

the payoff to player i is linear in the probability xi:

piðxi;x�iÞ ¼d þ ða� b� cþ dÞ xi x�i þðb� dÞ xi
þ ðc� dÞ x�i; i ¼ 1; 2: ð11Þ

It is straightforward to show that for this payoff structure the potential
function is given by V¼ (a� b� cþ d)x1x2þ (b� d)(x1þ x2). The potential
for asymmetric two-player games can be constructed along similar lines.20

Hence, the choice probabilities converge to those of the logit equilibrium for
the whole class of these commonly considered games.

19 This formulation corresponds to the setting in some laboratory experiments when subjects

are required to select probabilities rather than actions, with the experimenter performing the

randomization according to the selected probabilities. This method is used when the focus is

on the extent to which behavior conforms to a mixed-strategy Nash equilibrium. Ochs (1995)

used this approach in a series of matching-pennies games. Ochs reports that choices are

sensitive to players’ own payoffs, contrary to the mixed-strategy Nash prediction, and he

finds some empirical support for the logit equilibrium.
20 In an asymmetric game, the letters representing payoffs in (11) would have i subscripts,

i¼ 1, 2. Asymmetries in the constant or final two terms pose no problems for the construction

of a potential function, so the only difficulty is to make the (ai� bi� ciþ di) coefficient of the

interaction terms match for the two players. This can be accomplished by a simple rescaling of

all four payoffs for one of the players, which does not affect the stability proof of Proposition 3.
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IV. Conclusion

Models of bounded rationality are appealing because the calculations required
for optimal decision-making are often quite complex, especially when optimal
decisions depend on what others are expected to do. This paper begins with an
assumption that decisions are adjusted locally toward increasing payoffs. These
adjustments are sensitive to stochastic disturbances. When the process settles
down, systematic adjustments no longer occur, although behavior remains
noisy. The result is an equilibrium probability distribution of decisions, with
errors in the sense that optimal decisions are not always selected, althoughmore
profitable decisions are more likely to be chosen. The first contribution of this
paper is to use a simple model of noisy directional adjustments to derive an
equilibrium model of behavior with endogenous decision errors that corre-
sponds to the stochastic generalization of Nash equilibrium proposed by
Rosenthal (1989) and McKelvey and Palfrey (1995). The central technical
step in the analysis is to show that directional adjustments subject to normal
noise yield a Fokker–Planck equation, with a steady state that corresponds to a
‘‘logit equilibrium’’. This equilibrium is described by a logit probabilistic
choice function coupled to a Nash-like consistency condition.

The second contribution of this paper is to prove stability of the logit equili-
brium for all potential games. We use Liapunov methods to show that the
dynamic system is stable for a class of interesting payoff functions, i.e., those
for potential games. This class includes minimum-effort coordination games,
linear/quadratic public goods and oligopoly games, and two-person 2� 2 matrix
games in which players select mixed strategies. The process model of directional
changes adds plausibility to the equilibrium analysis, and an understanding of
stability is useful in deciding which equilibria are more likely to be observed.

Models of bounded rationality are of interest because they can explain
behavior of human decision-makers in complex, changing situations. The
stochastic logit equilibrium provides an explanation of data patterns in labora-
tory experiments that are consistent with economic intuition but which are not
explained by a Nash equilibrium analysis; see McKelvey and Palfrey (1995)
and Anderson et al. (1998a, b, 2001). The presence of decision errors is
important when the Nash equilibrium is near the boundary of the set of feasible
decisions, so that errors are biased toward the interior. In addition, errors have
non-symmetric effects when payoff functions are sensitive to noise in others’
behavior. In the presence of noise, equilibrium behavior is not necessarily
centered around the Nash prediction; errors that push one player’s decision
away from a Nash decision may make it safer for others to deviate. In some
parameterizations of a ‘‘traveler’s dilemma’’ game, for example, the Nash
equilibrium is at the lower end of the feasible set, whereas behavior in labora-
tory experiments conforms more closely to a logit equilibrium with a unimodal
density located at the upper end; see Capra et al. (1999).

# The editors of the Scandinavian Journal of Economics 2004.
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The stochastic elements in our model are intended to capture a variety of
factors, such as errors, trembles, experimentation and non-payoff factors such
as emotions. In some contexts, behavior may be largely driven by a specific
bias, like inequality aversion in bargaining situations, as in Fehr and Schmidt
(1999) and altruism in public goods games, as in Andreoni (1987). These
factors can be used to specify more general payoff functions that incorporate
social preferences. The analysis of this paper would still apply in the sense that
the gradient of the enriched payoff function would determine the direction of
adjustments, and the resulting steady state would correspond to a logit equili-
brium that incorporates these other regarding preferences. In summary, adding
an error term to a gradient adjustment rule yields a tractable model with a
steady-state equilibrium that has appealing theoretical and empirical properties.

Appendix

Derivation of the Fokker–Planck Equation

Recall that the directional adjustments are stochastic: dxðtÞ ¼ pe0ðxðtÞ; tÞdtþ s dwðtÞ
(see (2)), where we have dropped the player-specific subscripts for brevity. Note that the

payoff derivative pe 0 depends on time through the decision x and through other players’

distribution functions. After a small time change, �t, the change in a player’s decision

can be expressed as:

�xðtÞ � xðtþ�tÞ � xðtÞ ¼ pe0ðx; tÞ�tþ ��wðtÞ þ oð�tÞ: ðA1Þ

where sDw(t) is a normal random variable with mean zero and variance s2Dt, and o(Dt)
indicate terms that go to zero faster than Dt (i.e., K is of o(Dt) when K/Dt! 0 as Dt! 0). A

player’s decision, therefore, is a random variable x(t) that has a time-dependent density f(x,

t). Let h(x) be an arbitrary twice-differentiable function that vanishes at the boundaries, as

does its derivative. At time tþDt, the expected value of h(x) can be expressed directly as:

E hðxðtþ�tÞÞf g ¼
ðxH
xL

hðxÞf ðx; tþ�tÞdx: ðA2Þ

The directional adjustment rule in (A1) can be used to obtain an alternative expression for

the expected value of h(x) at time tþDt:

E hðxðtþ�tÞÞf g ¼ E hðxðtÞ þ�xðtÞÞf g � E hðxðtÞÞ þ pe 0ðx; tÞ�tþ ��wðtÞÞf g:
ðA3Þ

where we neglected terms of o(Dt). The rest of the proof is based on a comparison of the

expected values in (A2) and (A3). A Taylor expansion of (A3) will involve h0(x) and
h00(x) terms, that can be partially integrated to convert them to expressions in h(x). Since

2
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h(�) is arbitrary, one can equate equivalent parts of the expected values in (A2) and (A3),

which yields the Fokker–Planck equation in the limit as Dt goes to zero.

Let g(y) be the density of sDw(t), i.e., a normal density with mean zero and variance

s2Dt. The expectation in (A3) can be written as an integral over the relevant densities:

E hðxðtþ�tÞÞf g ¼
ð1

�1

ðxH
xL

hðxþ pe0ðx; tÞ�tþ �yÞf ðx; tÞgðyÞdxdy: ðA4Þ

A Taylor expansion of the RHS of (A4) yields:

ð1

�1

ðxH
xL

fhðxÞ þ h0ðxÞ½pe 0ðx; tÞ�tþ �y� þ 1

2
h00ðxÞ½pe0ðx; tÞ�tþ �y�2 þ � � � f ðx; tÞgðyÞdxdy;

where the dots indicate terms of o(Dt). Integration over y eliminates the terms that are

linear in y, since it has mean zero. In addition, the expected value of y2 is s2Dt, so the

result of expanding and integrating the above expression is:

ðxH
xL

hðxÞf ðx; tÞdxþ�t

ðxH
xL

h0ðxÞpe0ðx; tÞf ðx; tÞdxþ�t
�2

2

ðxH
xL

h00ðxÞf ðx; tÞdxþ oð�tÞ:

The integrals containing the h0 and h00 term can be integrated by parts to obtain integrals

in h(x):

ðxH
xL

hðxÞf ðx; tÞdx��t

ðxH
xL

hðxÞðpe0ðx; tÞf ðx; tÞÞ0dxþ�t
�2

2

ðxH
xL

hðxÞf 00ðx; tÞdx; ðA5Þ

where a prime indicates a partial derivative with respect to x, and we used the fact that h

and its derivative vanish at the boundaries. Since (A5) is an approximation for (A2) when

Dt is small, take their difference to obtain:

ðxH
xL

hðxÞ f ðx; tþ�tÞ � f ðx; tÞ½ �dx ¼ �t

ðxH
xL

hðxÞ �ðpe 0ðx; tÞf ðx; tÞÞ0 þ ð�2 =2Þf 00ðx; tÞ
� �

dx:

ðA6Þ

The terms in square brackets on each side must be equal at all values of x, since the

choice of the h(x) function is arbitrary. Dividing both sides by Dt, taking the limit Dt ! 0

to obtain the time derivative of f(x, t), and equating the terms in square brackets yields:

@f ðx; tÞ
@t

¼ �ðpe0ðx; tÞ f ðx; tÞÞ0 þ
�2

2
f 00ðx; tÞ: ðA7Þ
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Since the primes indicate partial derivatives with respect to x, we can integrate both sides

of (A7) with respect to x to obtain the Fokker–Planck equation in (3).

Derivation of Equation (9)

The Liapunov function in (8) depends on time only through the density functions, since

the x’s are variables of integration. Hence the time derivative is:

dL

dt
¼
Xn
i¼1

ðxH
xL

� � �
ðxH
xL

Vðx1; . . . ; xnÞ
Y
j 6¼i

fjðxj ; tÞ
@fiðxi; tÞ

@t
dx1 . . . dxn

�
Xn
i¼1

�i

ðxH
xL

ð1þ logðfiðxi; tÞÞÞ
@ fiðxi; tÞ

@t
dxi :

ðA8Þ

The next step is to integrate each of the expressions in the sums in (A8) by parts. First

note that @fi/@t¼ @2Fi/@t@xi and that the anti-derivative of this expression is @Fi/@t.
Moreover, the boundary terms that result from partial integration vanish because

Fi(0, t)¼ 0 and Fi(, t)¼ 1 for all t, i.e., @Fi/@t¼ 0 at both boundaries. It follows that

partial integration of (A8) yields:

dL

dt
¼�

Xn
i¼1

ðxH
xL

� � �
ðxH
xL

@Vðx1; . . . ; xnÞ
@xi

Y
j 6¼i

fjðxj ; tÞ
@Fiðxi; tÞ

@t
dx1 . . . dxn

þ
Xn
i¼1

�i

ðxH
xL

f 0i ðxi; tÞ
fiðxi; tÞ

@Fiðxi; tÞ
@t

dxi:

ðA9Þ

Equation (7) can be used to replace
R
@V=@xi dF�i with pei

0, and then the integrals in

(A9) can be combined as:

dL

dt
¼
Xn
i¼1

ðxH
xL

�pe0ðxi; tÞ þ �i
f 0i ðxi; tÞ
fiðxi; tÞ

� �
@Fiðxi; tÞ

@t
dxi

¼
Xn
i¼1

ðxH
xL

ð@Fiðxi; tÞ=@tÞ2

fiðxi; tÞ
dxi;

ðA10Þ

where the final equation follows from (3). Note that the RHS of (A10) is strictly positive

unless @Fi/@t¼ 0 for i¼ 1, . . . , n, i.e., when the logit conditions in (4) are satisfied.
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