
DISCUSSION PAPER SERIES

 

3412-1636639363
 

Search Direction: Position Externalities
and Position Auction Bias

Simon P Anderson and Régis Renault

INDUSTRIAL ORGANIZATION

ORGANIZATIONAL ECONOMICS



ISSN 0265-8003

Search Direction: Position Externalities and Position
Auction Bias

Simon P Anderson and Régis Renault

Discussion Paper 3412-1636639363
  Published N/A

  Submitted 11 November 2021

Centre for Economic Policy Research
  33 Great Sutton Street, London EC1V 0DX, UK

  Tel: +44 (0)20 7183 8801
  www.cepr.org

This Discussion Paper is issued under the auspices of the Centre’s research programmes:

Industrial Organization
Organizational Economics

Any opinions expressed here are those of the author(s) and not those of the Centre for Economic
Policy Research. Research disseminated by CEPR may include views on policy, but the Centre
itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to
promote independent analysis and public discussion of open economies and the relations among
them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of
medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage
discussion and comment. Citation and use of such a paper should take account of its provisional
character.

Copyright: Simon P Anderson and Régis Renault



Search Direction: Position Externalities and Position
Auction Bias

 

Abstract

We formulate a tractable model of pricing under directed search with heterogeneous firm
demands. Demand height and width drive bids in a position auction and enable us to bridge
insights from the ordered search literature to those in the position auction literature. Equilibrium
pricing implies that the marginal consumer’s surplus decreases down the search order, so
consumers optimally follow the firms’ position ordering. A firm suffers from ”business stealing” by
firms that precede it and ”search appeal” from subsequent firms. We find rankings that achieve the
maximal joint profit, social welfare, or consumer surplus by constructing firm-specific scores. A
generalized second price auction for positions endogenizes equilibrium orders and bids are driven
by position externalities that impact incremental profit from switching positions. The joint profit
maximization order is upheld when firm heterogeneity concerns mostly demand height. But the
consumer welfare order is robust when firms differ mostly over demand width. 

JEL Classification: L13, M37, L65

Keywords: ordered search, product heterogeneity, position externalities, optimal and equilibrium
rankings, generalized second price auction, position auction

Simon P Anderson - sa9w@virginia.edu
University of Virginia and CEPR

Régis Renault - renaultregis1@gmail.com
Université de Cergy-Pontoise and CEPR

Acknowledgements
The first author thanks the NSF for support under grant GA10704-129937 (“Advertising Themes”). The second author thanks the
ANR for support under grant StratCom -19-CE26-0010-03. We also thank Labex MME-DII and CY Advanced Studies for funding.
We are grateful to Arthur Fishman, Ganesh Iyer, Maarten Janssen, Przemyslaw Jeziorski, Vincent Lefrere, Andrew Rhodes,
Sandro Shelegia, Miguel Villas�Boas, Maxim Engers, and Jidong Zhou for insightful comments and to Jenna Blochowicz for
careful and perceptive research assistance. We also thank audiences at multiple seminars and conferences. 

Powered by TCPDF (www.tcpdf.org)



Search Direction: Position Externalities and Position
Auction Bias∗

Simon P. Anderson†and Regis Renault‡

November 10, 2021

Abstract

We formulate a tractable model of pricing under directed search with heterogeneous
firm demands. Demand height and width drive bids in a position auction and enable
us to bridge insights from the ordered search literature to those in the position auction
literature. Equilibrium pricing implies that the marginal consumer’s surplus decreases
down the search order, so consumers optimally follow the firms’ position ordering. A
firm suffers from ”business stealing” by firms that precede it and ”search appeal” from
subsequent firms. We find rankings that achieve the maximal joint profit, social welfare,
or consumer surplus by constructing firm-specific scores. A generalized second price
auction for positions endogenizes equilibrium orders and bids are driven by position
externalities that impact incremental profit from switching positions. The joint profit
maximization order is upheld when firm heterogeneity concerns mostly demand height.
But the consumer welfare order is robust when firms differ mostly over demand width.

Keywords: Ordered search, product heterogeneity, position externalities, optimal
and equilibrium rankings, generalized second price auction, position auction.

JEL Classification: L13, M37, L65

∗The first author thanks the NSF for support under grant GA10704-129937 (“Advertising Themes”).
The second author thanks the ANR for support under grant StratCom -19-CE26-0010-03. We also thank
Labex MME-DII and CY Advanced Studies for funding. We are grateful to Arthur Fishman, Ganesh Iyer,
Maarten Janssen, Przemyslaw Jeziorski, Vincent Lefrere, Andrew Rhodes, Sandro Shelegia, Miguel Villas-
Boas, Maxim Engers, and Jidong Zhou for insightful comments and to Jenna Blochowicz for careful and
perceptive research assistance. We also thank audiences at multiple seminars and conferences.
†University of Virginia and Center for Economic and Policy Research. Department of Economics, Uni-

versity of Virginia, Charlottesville VA 22904, USA. sa9w@virginia.edu.
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1 Introduction

Internet search is guided by ad positions. These slots are allocated through firms’ bids. The

extant literature on ordered search has not fully integrated the role of bidding for positions,

while the literature on position auctions has not gone deep into firm pricing when search is

ordered. The ordered search literature shows that otherwise symmetric firms expecting to be

searched earlier charge lower prices so consumers indeed want to start search at those firms.

Armstrong (2017) is an invaluable synthesis and buildout of that literature. By contrast, the

research on position auctions focuses on how heterogeneous firms bid per click to obtain a

favorable position in a directed search order. However, it treats prices as exogenous so it does

not address some critical conundrums that the existing results on competition with ordered

search inevitably raise. How does firm heterogeneity modify pricing to induce consumers to

follow the specified search order? Does a firm selling a product which is less appealing to

sample drop its price enough to compensate for this disadvantage when it is placed early

in the search order? If early firms price low, all other things equal, how can consumers

expect them to bid sufficiently high per click to be in such favorable positions? The present

paper proposes a comprehensive analysis of these issues while considerably expanding the

dimensions of firm heterogeneity that can be accommodated.

Whether a firm will bid more than its rivals to be searched early is impacted by position

externalities, which are the effects that a firm has on other firms’ profits if it changes its

position in the search order. There is an obvious traffic externality, or business stealing

(Chen and He, 2011), which results from a firm moving ahead in the search order siphoning

off customers (who stop there) from following firms. But there is a more subtle reverse

impact for firms that are demoted: there is less competition due to the reduced number

of firms remaining to be searched. To illustrate, consider the symmetric case, where firms

searched later charge higher prices. When a firm moves ahead in the search order, firms

jumped over charge higher prices because they are one step closer to the end so it is less

attractive for consumers to search on.1 We call this the search appeal externality. These

1If all prices are the same as for instance in Athey and Ellison (2011), and if the optimal search rule is
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externalities are nuanced when firms have different demand profiles. For example, advancing

a popular firm hurts those superseded more than advancing a niche firm. Similarly, the search

appeal effect is stronger when consumers get a higher expected surplus with the firm. Our

setting provides a precise measure of these externalities and how they are affected by the

properties of demand for the various products. It is stripped down to basic component parts

that capture the complex manner in which these externalities impact pricing, bidding, and

firms’ and consumers’ welfare. We account for multiple dimensions of firm heterogeneity by

isolating factors that affect their pricing, which are expressed in demand height and factors

that affect their sales, expressed in demand width.

The first dimension of demand height we label the product’s quality : all other things

equal, a higher quality product is sold at a higher price in any given slot. A firm’s profit

is impacted directly by its product’s quality but others are not, so this is a private value

dimension. The second dimension arises because the pricing of a product is also affected

by the distribution of valuations for competing products that are positioned later. In our

model, the search appeal of those products is precisely measured by the reservation utility

associated with sampling the product as characterized in Weitzman (1979). Increasing firm’s

search appeal brings down the prices of all firms that are positioned earlier in the search

order. We show that the equilibrium price of a firm increases in step with its product’s

quality and decreases in the cumulative search appeal of all the products positioned later.

This pricing behavior yields a higher surplus for the marginal consumer (who is indifferent

between buying and searching on) at earlier slots. As a result, it is always optimal for a

consumer to follow the directed search order: pricing ensures that this search order is optimal

according to the characterization of Weitzman (1979), no matter what the order is.

Demand width is characterized by the product’s market potential which is the probability

that a consumer is interested in buying the product. The product’s market potential has a

direct impact on the firm’s profit by determining the quantity sold to consumers who search

up to that firm: a firm positioned in a given slot sells more if its product has a higher market

myopic as in Weitzman (1979), then the number of remaining firms is irrelevant to the consumer’s search
decision as long as there is at least one left.

2



potential. Market potential also induces a negative externality on firms farther down in the

search order: the higher the market potential of preceding products, the lower the sales of

each firm.

Using the three parameters of product heterogeneity (quality, search appeal, and market

potential), we can construct product-specific scores to characterize an optimal ordering of

firms to maximize either total profit or total welfare or total consumer surplus. Total profit

maximization is achieved by prioritizing products with larger demand height parameters and

lower demand width. This mitigates the adverse effect of the search appeal and business

stealing externalities by ensuring that the prices of early firms, which sell more, are as high

as possible while the sales of later firms, which extract more surplus, are as large as possible.

By contrast, consumers like low prices early, at slots where they are more likely to buy, and

a low probability of purchasing a product positioned late, which extracts a large surplus

from them. As a result, they prefer products in top slots to have limited demand height and

substantial demand width.

Consider now a position auction with slots going to firms in the order of their bids per

click and each firm paying the bid of the next highest bidder. We analyze such a generalized

second price auction assuming bidders have complete information. Whether such an auction

mechanism can achieve joint surplus maximization for the auction participants (joint profit

maximization) is a priori ambiguous due to the two position externalities. We show that

when product heterogeneity only concerns demand height, if the joint profit maximizing

order involves ranking products according to the decreasing order of product qualities, it

is always an equilibrium outcome. This is a generalization of results in previous literature

that show this is true in pure private value settings, corresponding in our model to the case

where only product qualities differ.2 There are many other equilibrium outcomes if product

demands are similar enough. We show however that, if qualities are sufficiently dissimilar,

then the equilibrium ordering cannot be too different from that which maximizes total profit.

By contrast, when there is sufficient firm heterogeneity over demand width, maximization

2See Varian (2007) and Edelman, Ostrovsky and Schwartz (2007). We also show that the equilibrium we
derive satisfies the “no envy” refinement used by these authors.
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of total profit is no longer an equilibrium. Indeed, it would require that firms with low market

potential bid to be early in the order despite their low value for being in a top slot: the value

of the additional clicks they can obtain in such positions is low because these clicks are less

likely to be converted into purchases. Furthermore the reverse order, where products with

large market potential come first, can always be sustained as an equilibrium outcome. This

is typically the order favored by consumers.

Our paper integrates and enriches two streams of literature. An important insight from

the analysis of sequential ordered search is that when prices are endogenously chosen by

competing sellers there can be equilibria where firms searched earlier are both more attractive

to search and earn more profit, so they might be willing to pay for such prominence.3 A first

step forward is made by Armstrong, Vickers, and Zhou (2009),4 with only one prominent

firm and the remaining sellers searched randomly. The setting where all firms are searched

in order is explored by Zhou (2011). However, these papers assume i.i.d. consumer tastes

for products. We allow for asymmetric match distributions and show that the marginal

consumer’s surplus is lower at firms searched later, which implies prices increase along the

search order when qualities are the same. Asymmetries in product demands are considered in

Armstrong, Vickers, and Zhou (2009) and Song (2017). The former allow for heterogeneous

product qualities in an extension of their basic setting with only one prominent firm while

the latter considers products with asymmetric taste heterogeneity in a duopoly. Our setting

allows for multiple dimensions of product heterogeneity and deals with ordered search among

any number of competitors. Choi, Dai, and Kim (2018) and Haan, Moraga-Gonzalez, and

Petrikaite (2018) study how firms can use posted prices to direct search. In that setting,

different consumers follow different search orders based on some prior information about how

much they like the various products but firms are symmetric in the aggregate and charge

the same price.

3Previous literature on sequential search and competition focused on random search and is surveyed in
Anderson and Renault (2018). The ordered search models dicussed here build on the setting introduced by
Wolinsky (1986) and Anderson and Reenault (1999) with consumer search and horizontal product differen-
tiation.

4See Arbatskaya (2007) for an earlier contribution with homogenous products.
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The position auctions literature has made valuable progress on the auction side of the

slate while suppressing the market competition side.5 A first group of articles studies the

properties of generalized second price auctions with private values and do not account for

consumer behavior6 or surplus. Varian (2007) and Edelman, Ostrovsky, and Schwartz (2007)

focus on the existence of an efficient equilibrium, which maximizes the firms’ surplus. Gomes

and Sweeney (2014) show that such an equilibrium may fail to exist in a sealed bid auction

with asymmetric information. In our setting, a joint profit maximizing equilibrium may not

exist even though bidders have complete information. Athey and Ellison (2011) use a setting

very similar to that of Chen and He (2011) to look at auctions with asymmetric information

and then optimal auction design, while assuming that consumers go on searching until a

“need” is fulfilled. This yields a business stealing externality similar to ours. However, there

is no externality from search appeal because both price and the conversion rate (the proba-

bility that a consumer buys conditional on reaching the firm) are exogenous. Furthermore,

these two papers establish that it is optimal for consumers to search in the order that arises

from the auction because firms with a higher probability of meeting a need bid more. By

contrast, in our model it is optimal for consumers to search in the order because of the

pricing behavior they expect.

We also contribute to the analysis of auctions with externalities where the bidder will-

ingness to pay is determined in equilibrium and depends on which other bidders are likely to

win. That literature has considered auctions for a single object (e.g. Jehiel and Moldovanu,

1996a, 1996b) whereas we allow for any number of slots to be allocated.

Section 2 describes our search and competition environment while optimal ranking scores

for maximization of total industry profit, social welfare, and consumer surplus are derived

in Section 3. Finally we consider when allocation rules such as auctions used on internet

platforms might achieve total profit maximization in Section 4. Section 5 concludes.

5Although Chen and He (2011) have endogenous prices, all firms end up charging the monopoly price
due to a standard mechanism à la Diamond (1971).

6An exception is Gomes (2014) who endogenizes consumer click behavior in a two-sided market setting.
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2 Market equilibrium

2.1 Competition with ordered search

We first describe a model of oligopolistic competition with ordered consumer search, and

find firms’ equilibrium prices. There are n firms with Firm i selling product i, with zero

production costs. Consumers have unit demand with independent valuations for the n com-

peting products. Let Fi (v) denote the distribution function of a consumer’s valuation with

product i, i = 1, ..., n. We break down Fi (v) into three component parts.

We are thinking of situations in which consumers idiosyncratically either like the product,

or they do not, but they have heterogeneous valuations if they like it. For example, a

consumer may reject out-of-hand several styles of jacket, but the lowest valuation for a

jacket that she will countenance taking home to take up space in the closet is quite high.

Nonetheless, there may be several jackets that could interest her if she knows their details.7

Let then the probability of rejecting the product outright (regardless of price) be γi.

Lower γi products are more popular, per se. Second, let qi be the lowest valuation associated

to product i, conditional on it being desired. As we elaborate below, we shall assume that

qi is sufficiently large that all consumers who have some appreciation for a product end up

buying it in equilibrium when they come across it. The valuation for product i, vi, therefore

has support {0}∪Si, where minSi = qi and it is further assumed that vi is bounded: let then

Bi ≡ maxvi∈Si
vi − qi < ∞. The distribution function of vi is denoted Fi and, to facilitate

the exposition, it is assumed to be differentiable on Si, where fi denotes the corresponding

pdf.8

Distribution functions Fi are common knowledge but neither consumers nor firms know

the realizations of vi. Consumers may however learn these realizations through search.

Search is sequential, with cost s > 0 per search. Searching a firm reveals both its price

and the consumer’s valuation of the product searched. Searching a firm is necessary for a

7This set-up contrasts with Athey and Ellison (2011) in which prices are fixed, and with Chen and He
(2011) where each consumer has at most one product that could interest her, regardless of prices.

8The analysis goes through without assuming the existence of a p.d.f. on Si and can accommodate any
specification of Fi on Si including atoms in the distribution.

6



consumer to be able to buy its product. As is standard in sequential search models the

consumer may always purchase from any previously searched firm at no extra search cost.

Buying none of the n products nets an outside value utility of zero.9

The timing is that firms simultaneously choose prices and consumers choose their search

rules based on match values and prices they have found out so far, the distributions at other

firms and the prices expected there. We seek a Perfect Bayesian Equilibrium at which search

is ordered, meaning that all consumers follow the same search order. Because we have not

specified any systematic difference between the n firms (i.e. the match distribution for Firm

i = 1, ..., n can be any distribution satisfying the properties described above), there is no loss

of generality in assuming that this order is from Firm 1 to Firm n and we then check that

this order is indeed optimal for consumers. In our equilibrium, each firm optimally prices so

as to sell to all consumers that reach it with a positive draw for its product. This pricing

property means that Firm i renders any consumer drawing qi with it indifferent between

buying from i and searching further. Thus a consumer has zero willingness to pay for any

product encountered before Product i, and never goes back (as long as prices are strictly

positive, which will hold true in equilibrium). We show below that such an equilibrium

exists, provided that for all i qi is large enough and the density fi is strictly positive at qi.

To derive the equilibrium, we engage the powerful results of Weitzman (1979) to describe

optimal consumer search. He shows that remaining search options can be ordered by simple

myopic reservation values such that a consumer searches the option with the highest reser-

vation value next, or else stops searching if she already holds a utility above the highest

value (and buys the best option held or buys nothing). These reservation values are sum-

mary statistics for options, which set equal the expected costs and benefits of an additional

search. They are therefore determined independently of what has already been discovered.

A version of these reservation values is a key ingredient of pricing analysis. For each

product we define ∆i as per standard search analysis as the value that equates the expected

9It can be thought of as a continuation value (searching the organic links of a search engine after searching
the sponsored links, or purchasing a product off line) for consumers who have searched through all the n
firms: equilibrium prices are simply shifted down by the continuation value.
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upside gain to the search cost, so∫ qi+Bi

qi+∆i

(v − qi −∆i)dF (v) = s. (1)

Integrating by parts,
∫ qi+Bi

qi+∆i
[1 − Fi(v)]dv = s. The LHS strictly increases from 0 to +∞

as ∆i drops from Bi to −∞. Hence a unique ∆i always exists. Graphically, the value of

∆i is determined from the value of the critical valuation qi + ∆i for which the area under

the demand curve (1 − Fi (p)) equals the search cost s. That is, if the consumer currently

held a utility value of qi + ∆i then searching Firm i would be a break-even prospect if it

were expected to charge a zero price. (This is illustrated for Firm i + 1 and ∆i+1 in Figure

1.) With this interpretation, the values qi + ∆i, i = 1, ..., n, are the reservation values that

characterize consumer optimal search behavior if prices are all zero: from the analysis in

Weitzman (1979), a consumer should always choose to search next the remaining alternative

with the highest reservation utility qi+∆i or else stop searching if she already holds a higher

utility. If prices were equal for all products, consumers would choose to search in the order

in which we have indexed the firms only if qi + ∆i ≥ qi+1 + ∆i+1, i = 1, ..., n− 1.

Assume ∆i > 0. This implies that if a consumer holds valuation qi with product i and

contemplates searching Firm i+1, and if price differences were to exactly match base quality

differences (i.e., if pi− pi+1 = qi− qi+1), then her expected benefit from searching Firm i+ 1

would be strictly positive.

For our characterization analysis it is useful that we can vary parameters γi, qi, and ∆i

independently from each other. A change in qi is merely a shift up or down of the support

of strictly positive valuations, Si, so it can be done independently of the value of γi (the

probability that the product is not desired.) We show in the Appendix that the LHS of (1)

can be rewritten appropriately so that it is possible to modify Fi and have ∆i vary from 0

to +∞ independently of the values specified for qi and γi.

We now move to characterizing the equilibrium pricing and search order.
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2.2 Pricing

Consider a Firm i < n, and suppose it prices so that even a consumer who draws a match qi

with its product chooses not to search on. Because consumers follow an optimal search order

in equilibrium, they compare the utility they currently hold with the highest reservation value

among the remaining firms. In an equilibrium where consumers search in order from 1 to

n, this highest reservation value should be that for Firm i + 1. In other words, as per the

Weitzman (1979) analysis, the optimal search rule is myopic and only considers the costs

and benefits of searching Firm i+1 as if it were the only firm remaining. Because consumers

expect utility vi+1 − pi+1 with Firm i+ 1, the reservation utility, ri+1, associated with Firm

i+ 1 is the unique solution to∫ qi+1+Bi+1

ri+1+pi+1

(v − pi+1 − ri+1)dFi+1(v) = s.

It is immediate from comparing the above condition to (1) that we can write the reservation

valuation as ri+1 = qi+1 + ∆i+1 − pi+1. From this observation, we conclude that the largest

price, pi, that Firm i = 1, ..., n−1 can charge such that a consumer with match qi will decline

to search Firm i + 1 satisfies qi − pi = ri+1 = qi+1 + ∆i+1 − pi+1. This equality determines

the candidate equilibrium pricing rule as

pi = pi+1 + qi − qi+1 −∆i+1, (2)

which therefore determines a recursive relation. We now need to find an initial condition,

which is the price set by Firm n.

So consider Firm n’s problem. It knows it is the last to be searched and that all consumers

who get to it in equilibrium have zero valuation for all the other products. It is therefore

in a monopoly position. As we do for the other firms, we seek an equilibrium price such

that all consumers with valuations of at least qn buy Firm n’s product. The largest price n

can charge which is consistent with all such consumers buying is pn = qn. By applying the

recursive price relation (2) it follows by induction that equilibrium prices are

pi = qi −
n∑

j=i+1

∆j, i = 1, ..., n. (3)
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We establish below that this pricing sequence induces consumer search in the specified

order. We now show (proof in Appendix) that the pricing behavior described above is

indeed profit-maximizing as long as qi is sufficiently large and under the mild condition that

fi(qi) > 0 for all i.

Lemma 1 Assume fi(qi) > 0 and vi− qi < Bi <∞ for all vi ∈ S, i = 1, ..., n. If consumers

search optimally from Firm 1 to Firm n expecting all the firms to price according to (3),

then it is optimal for any Firm i to charge price pi defined by (3) as long as qi is sufficiently

large, i = 1, ..., n.

The intuition for the above result is the following. If all Firms j > i charge pj defined by

(3), then Firm i faces a demand which is completely inelastic up to pi defined by (3): for all

prices up to this level, it serves all consumers with strictly positive valuation for its product

and has demand 1 − γi. If its price satisfies (3), then the marginal consumer has valuation

qi. Hence i’s demand derivative for a price increase (the right derivative) is fi(qi). If this is

strictly positive, then with a large enough price, i.e. for a large enough qi, the corresponding

price elasticity is above one. A small price deviation is therefore unprofitable. Furthermore,

the upper bound on the support of valuations v̄i, implies an upper bound on a potentially

profitable price increase and if the equilibrium price is large enough, then the relative price

increment is too small to compensate for a resulting drop in demand which is not arbitrarily

small (so that large price deviations cannot be profitable either).

Lemma 1 establishes that firms do not wish to deviate from the candidate equilibrium

prices. To establish that this is an equilibrium, we merely need to verify that the specified

search order is optimal for consumers, that is, ri ≥ ri+1 for i = 1, ..., n − 1. Recall that

ri = qi + ∆i − pi which, from the pricing expression (3), implies ri =
∑

j≥i ∆j. So ri indeed

monotonically decreases as i increases. We summarize with the following Proposition.

Proposition 1 Under the assumptions of Lemma 1, there exists an equilibrium where con-

sumers search firms in the order of the firm index, i = 1, ..., n and Firm i charges a price

given by (3): pi = qi−
∑n

j=i+1 ∆j with equilibrium demands Di = (1− γi)
∏
j<i

γj; i = 1, ..., n.
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The pricing sequence in (3) bears the hallmark property that firms that are searched early

on extract less surplus from consumers than firms that are searched later. This property is

needed for consumers to search in the stipulated order, and generalizes the results in previous

studies of products with symmetric match distributions (Armstrong et al., 2009, Zhou, 2011

and Armstrong, 2017) that early firms charge lower prices.10

The equilibrium price has two components: a private value measured by qi and an exter-

nality from the remaining firms in the search order measured by
∑

j>i ∆j. The private value

is a surplus associated with the consumption of the firm’s product, for which it captures

any additional dollar through its price. The firm cannot however capture the entirety of this

surplus because of the downward pressure on its price resulting from the option consumers

have to search on to the firms down the line. The amount by which price is lowered can

be interpreted as the total search appeal of the remaining products to be checked out by

the consumer. Because of the “myopic” search rule used by the consumer, only the search

appeal of the next product down, ∆i+1, is directly relevant for Firm i’s pricing. However,

Firm i must also take into account the pricing behavior of Firm i+ 1, which depends on the

search appeal of Firm i + 2. This is why the total search appeal externality imparted on a

firm is the cumulative search appeal of all the remaining firms.

In the benchmark case where firms all have identical product match distributions (so that

∆i = ∆ for all i) the search appeal externality is merely (n− i)∆ for Firm i, which depends

on only the number of firms following Firm i and prices step up by ∆ from one firm to the

next. In our setting where products are ex ante heterogenous, the externality also depends

on the identity of the remaining firms. This property is key to the welfare analysis of the

optimal ordering of firms for maximal total profit or consumer surplus. It also has important

implications for the firms’ willingness to pay to be searched earlier rather than later.

The search appeal externality reflects the competition that a firm faces from the following

firms. But a firm does not directly compete in price with the preceding firms. This is because

10Armstrong (2017) shows this assuming that the c.d.f. of valuations for a product is logconcave. Other
articles also find this result in contexts with a very specific form of asymmetry: merged and not merged
products in Moraga-Gonzalez and Petrikaite (2012), or products with different degrees of heterogeneity in
matches in Song (2013).
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consumer search behavior factors in only the expected price at remaining firms: a firm has no

way to steal customers from its predecessors by committing to a lower price than expected.

However, preceding firms do affect Firm i’s profit because they price so that all consumers

who have a positive valuation with at least one earlier firm stop searching before reaching

Firm i. As a result, only a fraction
∏

j<i γj reach Firm i. This constitutes a business

stealing externality which was previously analyzed by Chen and He (2011) and Athey and

Ellison (2011) in models where prices are exogenous, or effectively so. If firms were ex ante

symmetric, with γi = γ for all i, market stealing for Firm i would depend only on the

number of predecessors and the fraction of consumers reaching Firm i would merely be γi−1.

Again, the identity of firms that are searched prior to Firm i becomes relevant once match

distributions differ across products. Our analysis introduces novel insights for the interaction

between business stealing and pricing, as shown in Section 3, where we show the tensions

for consumers and firms among different search orders when there are position externalities.

In Section 4 we endogenize the search order through a position auction.

We conclude this Section with two points about the comparison between equilibrium and

socially optimal search behavior. First, at this juncture (i.e., before we endogenize the search

order through the position auction), any order of search can constitute an equilibrium as per

Proposition 1. Yet the (first-best) optimal order entails searching in decreasing order of the

reservation values qi + ∆i. To see this, first note that the social optimum entails pricing at

marginal cost (here zero). The search problem for social welfare maximization is to achieve

the best possible gross valuation net of search costs. The definition of ∆i implies that the

reservation value associated with searching Firm i is qi + ∆i - and hence the optimal order

follows this statistic in decreasing order. The consumer should search i if she holds a lower

value than qi + ∆i.

Second, even for any given search order, equilibrium search (constrained by having to

follow the stipulated search order) is too low compared to the social optimum. This result

follows because equilibrium pricing chokes off further search as soon as the consumer gets

a positive match value. Instead, a consumer should optimally search Firm i whenever her
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match is below qi + ∆i. Then the benefit from searching Firm i alone is enough to justify

incurring search cost s and, whenever the search order is suboptimal, there is also an option

value from being able to search on beyond Firm i.11 In equilibrium, the consumer searches

Firm i if and only if her match is zero so that, if qi−1 < qi + ∆i, then there is not enough

search in equilibrium (regardless of whether the search order is optimal) because a consumer

holding qi−1 at Firm i− 1 should search but does not due to Firm i− 1’s price discount.

3 Optimal rankings

The results of the previous Section indicate that ANY order of search can be sustained as an

equilibrium to the game in which consumers follow their optimal search protocol and firms

set their prices. Prices though differ across these equilibrium search orders when firms are

asymmetric, and so the search order matters for various measures of market performance.

Typically, the optimal order varies by market performance measure. We here determine the

optimal orders, given equilibrium search and pricing, for total industry profit, social welfare,

and consumer surplus. For short, call these TIP, W, and CS respectively.

A priori, this is a complicated problem because position order affects all prices and search

probabilities: with n active firms there are n! configurations to compare. Nevertheless, the

structure of our model delivers a simple and clean characterization for the optimal order

under each criterion. The optimal order is described by ordering firms according to a simple

summary statistic, which is different for each surplus criterion.

The idea is as follows. For any neighboring pair of firms, A and B, in slots i and i + 1

respectively, (and for each surplus criterion), we can find a summary statistic Φk for Firm k

such that the maximand (CS, W, or TIP) evaluated in these two slots is higher if ΦA ≥ ΦB.

Crucially, the summary statistics are derived solely from parameters of the match distribution

of the corresponding product, FA for ΦA and FB for ΦB. Hence they do not depend on which

two slots are flipped (e.g., first and second or fifteenth and sixteenth). The key property of

11This option value is zero when the search order is optimal, as reflected in the myopia property of the
optimal search rule.
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our model is that such a flip affects the welfare objective only through the joint impact in the

two consecutive slots: the welfare in all the other slots only depends on the joint externality

that the two firms exert, either because they are in front (the business stealing externality) or

because they come later in the search order (the search appeal externality that affects prices

in those earlier slots). Thus, with ΦA ≥ ΦB, A being in front of B (rather than the reverse)

yields a higher welfare criterion computed over all the n slots. Clearly, a necessary condition

for a maximum is that flipping the order of the two firms in each successive pair does not

strictly increase the desired objective function. Because the flipping rule is independent of

the positions i and i + 1 to be flipped, this criterion induces an ordering of firms based

on the indices Φk as claimed above. Put another way, any alternative order, with at least

one pair of consecutive firms violating the pairwise flip condition, cannot be an optimum.

Thus the ranking of firms by the size of their summary statistics is a necessary condition

for optimality. It is also sufficient because, if there are no ties among firms in the sufficient

statistics Φk, there is only one such order out of a finite set of possible configurations, and

if there are ties, flipping two consecutive firms that are tied leaves the objective unchanged

so that the multiple solutions obtained by ranking according to Φk are all optimal.

We now derive the specific summary statistics for the different criteria. We also give the

intuition for the various orders.

3.1 Total Industry Profit (TIP)

The profit for the firm in position i is

πi = (qi − κi)λi (1− γi) , i = 1, ...n, (4)

where we have defined κi = Σj>i∆j as the sum of all later price steps (where κn is taken to

be zero), and λi =
∏

j<i γj for i > 1 as the as the probability that a consumer has no interest

in any of the previous products (and we let λ1 = 1). The term in the first parenthesis in (4)

is the equilibrium price (3) and it is multiplied by the probability that the consumer ends

up searching Firm i, λi, and then buying product i, 1− γi.
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As explained above, to find the maximum TIP we just need to look at the change in

profit from switching Firms A and B between slots i and i+ 1. Thus A precedes B as long

as

πiA + πi+1
B ≥ πiB + πi+1

A , (5)

where πik denotes the profit of Firm k when it is in slot i. Writing this out for our model,

(1− γA) (1− γB) (qA − qB) + (1− γB) ∆A − (1− γA) ∆B ≥ 0. (6)

To derive this, first notice that we can divide through by the total number of consumers who

search up to slot i, i.e., λi, and then the terms in all prices after i+ 1 (i.e., κi+1) cancel out.

Importantly, the condition is independent of the position in the overall order of the two slots

that are switched.

Dividing through (6) by (1− γA) (1− γB) delivers the TIP summary statistics such that

A should be before B (in any consecutive pair, and hence in the global maximum) as long

as

Φπ
A ≡ qA +

1

1− γA
∆A > qB +

1

1− γB
∆B ≡ Φπ

B.

The TIP summary statistic is readily apparent from this inequality, and is given next:

Proposition 2 An order of firms maximizes Total Industry Profit if and only if it follows

the ranking of the summary statistic

Φπ
k ≡ qk +

1

1− γk
∆k (7)

and firms should follow a decreasing order of the Φπ
k . Ceteris paribus, higher qk, ∆k, and

γk should go earlier in the order.

To understand this result, recall that, in equilibrium, firms that are early in the search

order sell more but extract less consumer surplus (they have deeper quality discounts),

whereas firms that come later sell less but extract more consumer surplus because their

prices are closer to their qualities. TIP maximization is achieved by ensuring that firms that

sell more extract as much surplus as possible and firms that extract the most surplus sell as
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much as possible. The first objective is achieved by having firms with a large quality qk and

a large search appeal ∆k searched early. Having firms with least popular products (large γk)

searched first serves the second goal.

One way to see these effects clearly in isolation is by looking at each as the sole source

of heterogeneity (so the other parameters are set the same for all firms). A large quality

ensures that there is much potential consumer surplus to be extracted by the sellers of such

products, which should therefore have the most consumers sampling them. Notice that the

quality effect is NOT an externality on the other firms.

High ∆ firms cause low prices on all those which precede them. Switching a high-∆ firm

with a low-∆ one that was initially earlier, raises the prices for all the firms in between the

two slots, and so raises total profits. The idea of stacking up early all the high-∆ firms is

to “clear-the-decks” of them to suppress their shadow on all prices that come earlier, which

they would otherwise bring down. Put another way, having the firms that are most appealing

to search early mitigates the search appeal externality imparted by these firms: they can

keep their prices relatively high because consumers are not too eager to search the remaining

firms.

Finally, it may seem surprising that firms with less popular products (large γk) should

be presented first to consumers because these firms are less likely to make a sale. However,

early slots have low prices, so the ranking uses up these slots on less likely prospects.12 Firms

that extract the most surplus from their customers have larger sales if the business stealing

externality from earlier firms is limited. Both this feature and the search appeal externality

already suggest that consumer surplus may run the opposite way from TIP, a property that

is confirmed in broad-brush terms.

12For example, suppose there were two firms, and γA = 0.1 while γB = 0.9. Then the number of consumers
who buy constitute 91 percentage points, regardless of the order of search. Having A first entails 89% buying
at the high price, while B first means only 1% do.
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3.2 Social Welfare

We next consider the pairwise ranking condition for Welfare (given equilibrium firm pricing).

First note that, because pricing ensures that all consumers who are interested in any of the

products buy one of them, prices are just a straight transfer between firms and consumers,

and so do not enter the calculus.

Conditional on reaching Firm k, the expected social welfare when a consumer searches

Firm k may be written as

−s+ (1− γk)qk +

∫ qk+Bk

qk

(v − qk) dFk(v).

Substituting in the definition of ∆k in equation (1) to cancel out s, the above expression

may be rewritten

(1− γk)qk + [1− Fk(qk + ∆k)]∆k +

∫ qk+∆k

qk

(v − qk) dFk(v). (8)

Now define βk = 1 − Fk(qk + ∆k) and αk =
∫ qk+∆k

qk
(v − qk) dFk(v), so that this expected

social welfare may be written as

(1− γk)qk + βk∆k + αk. (9)

Figure 2 illustrates these components, and how they correspond to (8). The height ∆k

is the quality-price discount the preceding firm (k − 1) must offer to keep on-board all its

consumers not drawing a zero match value, the width βk is the fraction of consumers drawing

a match with k of at least (qk + ∆k) so that βk∆k is the value of the discount to these types,

and αk is the remaining surplus triangle. Notice that the expression (βk∆k + αk) < 1 can

be treated as one entity in what follows, though we choose to break it into the separate

rectangle and “triangle” components. We have also drawn in the Figure the firm surplus,

pk (1− γk), so that the consumer surplus (treated next) is also immediately transparent as

the difference between social surplus and firm profit.

Consider now the welfare from searching A then B (conditional on having reached A at

some position i). Then, comparing it with the converse while using the analogous expression
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(switching subscripts) for the opposite order yields the condition for the sequence AB (for

any consecutive pair) to be preferable to BA as:

qA (1− γA) + βA∆A + αA + γA (qB (1− γB) + βB∆B + αB)

≥ qB (1− γB) + βB∆B + αB + γB (qA (1− γA) + βA∆A + αA) ,

and hence

ΦW
A ≡ qA +

βA∆A + αA
1− γA

≥ qB +
βB∆B + αB

1− γB
≡ ΦW

B .

The summary statistic is thus the one given next:

Proposition 3 An order of firms maximizes Social Welfare if and only if it follows the

ranking of the summary statistics

ΦW
k ≡ qk +

βk∆k + αk
1− γk

(10)

and firms should follow a decreasing order of the ΦW
k . Ceteris paribus, higher qk, ∆k, γk,

should go earlier in the order.

As can be seen by comparing (10) with (7) the criterion for determining the search order

that maximizes social welfare is remarkably similar to that which we derived to optimize

total industry profit: larger values of qk, ∆k and γk should come first. If all else is the same,

the two criteria are perfectly aligned regarding base qualities qk. This is easily understood:

any additional dollar of surplus induced by an increase in qk is entirely captured by Firm k

as can be seen from the equilibrium pricing expression (3).

The fact that both criteria call for having products with large values of ∆k searched

early is somewhat misleading, because the underlying economic reason is quite different. As

was explained above, the rationale for having products with large search appeal early in the

order when maximizing TIP is to mitigate the search appeal externality imparted on the

first firms. By contrast, when considering social welfare, ∆k is relevant to the extent that it

enters into the measure of the total surplus generated in excess of the base quality qk, for

which the expression is βk∆k + αk. Generally, social welfare maximization puts less weight
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on ∆k than TIP maximization. There can even be an extreme configuration where ∆k is

essentially irrelevant to social welfare: this happens when there is only a small probability

that the match with product k exceeds qk + ∆k so that βk is nearly zero (and Bk is then

large so that a consumer can draw very large matches and (1) is satisfied).13

Finally the requirement that less popular products (low values of γk) should come first

to achieve maximum social welfare may seem even more surprising than the analogous result

for TIP maximization. Indeed, if the probability that consumers are not at all interested

in the first products they encounter, they will keep searching longer, which seems wasteful.

However, as we noted in the previous Section, consumers actually do not search enough in

equilibrium. They stop searching as soon as they have a strictly positive valuation with a

product whereas the social optimum would have them search as long as their valuation is

below qk + ∆k. This inefficiency is more severe when consumers draw a strictly positive

match early on.

3.3 Consumer Surplus

The consumer surplus case proceeds analogously to the welfare one, except now prices feature

explicitly. A second key difference is that the qk’s do not enter because they are priced out.

Letting pik be Firm k’s price when in slot i, consumer surplus with product k in slot i is

−s+ (1− γk)(qk − pik) +

∫ qk+Bk

qk

(v − qk)dFk(v),

The pricing rule (3) gives pik = qk−∆i+1−κi+1 and pi+1
k = qk−κi+1 where κi+1 = Σj>i+1∆j

denotes the sum of later price steps. Using the search identity (1) and the pricing equation to

substitute out the search cost and the price, consumer surplus can be expressed in a manner

similar to the social welfare expression (9), while defining βk and αk as before so we have

(1− γk) (∆i+1 + κi+1) + βk∆k + αk,

13Also note that αk could be anywhere between 0 and arbitrarily close to ∆k(1 − βk − γk): the former
happens when qk is drawn with probability 1−βk−γk and the latter when all the weight of the distribution
of matches between qk and qk + ∆k is concentrated just below qk + ∆k.
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with Firm k in slot i and

(1− γk)κi+1 + βk∆k + αk,

with Firm k in slot i+ 1.

Hence the consumer surplus associated with AB exceeds that of BA (which is found by

transposing subscripts again) if

(1− γA) ∆B +βA∆A+αA+γA (βB∆B + αB) ≥ (1− γB) ∆A+βB∆B +αB +γB (βA∆A + αA)

where the κi+1 terms all cancel out because they are common to both firms’ prices: hence

the same calculus applies regardless of which slot i is the base one.

Rearranging yields

ΦCS
B ≡

1

1− γB
((βB − 1)∆B + αB) ≥ 1

1− γA
((βA − 1)∆A + αA) ≡ ΦCS

A ,

It is readily seen that αk < ∆k(1− γk − βk) so βk∆k + αk < ∆k and all the terms above are

negative and the implication for the summary statistic is given next:

Proposition 4 An order of firms maximizes Consumer Surplus if and only if it follows the

ranking of the summary statistics

ΦCS
k ≡

1

1− γk
((βk − 1)∆k + αk) < 0 (11)

and firms should follow a decreasing order of the ΦCS
k . The qk value is irrelevant whereas,

ceteris paribus, higher ∆k and γk should go later in the order.

The qualitative implications regarding the ranking of products according to how popular

they are (γk) and how appealing they are for search (∆k) is quite opposite to what we

obtained for TIP or social welfare maximization. Indeed the consumer surplus maximization

objectives are the reverse of what we found for total profit: consumers retain more surplus

for products placed early in the search order because of pricing and also because they expand

less search costs to get to them. Hence, the maximization of consumer surplus requires that

the likelihood that the early products are bought is as large as possible, which is ensured by
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having low γk products first, and the surplus extracted from consumers at those early slots

is as low as possible, which means that products with a large ∆k should come later.

By explicitly deriving endogenous prices and considering ex ante heterogeneous products,

we highlight a conflict between the order that is desirable for firms and that which consumers

prefer, which has not been identified in previous literature. For instance, in Athey and El-

lison (2011), the preferred order for both consumers and firms is that the most popular

products are first. This is because for them the order matters only because they assume that

search costs are heterogeneous and some consumers stop searching whereas they could have

purchased a product that they like (this does not happen in our setting). If we introduce het-

erogeneous search costs in our search environment, the optimal order for TIP maximization

becomes ambiguous but the order for consumer surplus would be unchanged.14

4 Auctions

Thus far we have analyzed the market outcome while assuming some set order of search.

The analysis in Section 2.2 shows that any search order could be an equilibrium order, where

firms price optimally while expecting consumers to follow the search order and consumers

search optimally in this order while correctly anticipating firms’ prices. Here we endogenize

the search order by allowing firms to compete for the best spots. Specifically, we consider a

generalized second price auction, in line with previous literature on auction mechanisms used

for online search engines. We significantly extend the earlier literature by allowing the firm’s

position valuations to result from our full-fledged price competition model. Consequently, the

auction involves two position externalities, business stealing and search appeal. The auction

game we consider is as follows. There are n ≥ 2 firms competing for n slots. Each firm

simultaneously posts a bid per click. Let bi denote the ith highest bid, where two consecutive

bids can be equal. The ith slot, i = 1, ..., n, is allocated to the firm with the ith highest bid,

and that firm is charged bi+1 per click: if two firms have equal bids each is equally likely to

14In Chen and He (2011), all consumers have the same search cost and the order of products is irrelevant
for TIP or CS maximization in the early slots for which they assume a low search cost. However, it is
preferable that these early slots are occupied by the most popular products.
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be placed in front. Throughout the analysis below, Firm i, i = 1, ..., n is the firm that is

positioned in slot i in a candidate equilibrium. Firm n, which has the lowest bid, bn, gets

the last slot so it is searched last and pays nothing.

Recall from our earlier analysis (see (4)) that the gross profit for Firm i is

πi = (qi − Σj>i∆j) (1− γi)
∏
j<i

γj, i = 1, ...n. (12)

We start with some general preliminary analysis that introduces the main concepts and

how they can be used to analyze a position auction problem.

4.1 Preliminaries

We write the (generalized second-price) auction position equilibrium problem in terms of

firms’ profits in different positions, the traffic (incoming clicks) they get in these positions,

and the amounts they pay for click traffic at each position. For the moment, we work

with a general analysis which encompasses our specific model as well as the others in the

extant literature, and should prove useful to other researchers who address such auction

equilibria under reasonable restrictions on payoffs. We deliver some conditions that can be

readily evaluated from the pay-off structure and which imply that candidate local equilibrium

conditions on positions ensure global deviations are not profitable. In the next sub-section

we provide a simple setting in which the per click bids are guaranteed to be higher at earlier

positions (so that higher bids get better places).

We consider some ordering of firms by their positions, and the (initial) order specifies

each firm’s type in terms of its characteristics and the externalities that effect it, as expressed

through profitability and click traffic in different places (which are in turn determined by

pay-off parameters). What happens to the payoff to the firm in the jth position (Firm

j = 1, ..., n) when it moves to some other position i? In contemplating such a move, we

hold fixed the order of the other firms, so that the first i − 1 firms retain their positions if

j moves up to reach the ith position (i < j), Firms i through j − 1 are demoted one slot

down, and firms below j retain their positions. Conversely, if Firm j contemplates moving
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down to position i > j then Firms 1 through j − 1 and Firms i + 1 through n retain their

positions, while Firms j + 1 through i are promoted one slot up.

Let πi (j) denote the profit of Firm (type) j when it moves to position i, so πj (j) is

its profit at the status quo. We hold throughout that profit for any firm type is higher at

earlier slots. Let the number of clicks (incoming traffic) to Firm j in position i be denoted

Γi (j). In accord with the earlier pricing equilibrium model, we assume that incoming traffic

is the chance that a consumer has not bought from any of the preceding firms, so that

Γj (j) = Π`<jγ`, Γi (j) = Π`<iγ` for i < j, and Γi (j) = Π`<i+1,` 6=jγ` for i > j. Let Bi (j)

denote the total amount that Firm j would pay for the clicks it would receive in position i.

This total will be defined momentarily in terms of the per click bid of the next firm in the

purported search order and incoming traffic.15

A per click position equilibrium is a set of per click bids such that firms’ positions are given

in descending order of their bids with each paying the bid per click of the firm immediately

below it, and no firm wishing to switch its position. We split the latter conditions into there

being no desire to jump down, and none to jump up. We deal with these in turn.

For Firm i (i.e., the incumbent type in position i) to not wish to jump down k ≥ 1 slots

to position i+ k, requires that

Bi (i)−Bi+k (i) ≤ πi (i)− πi+k (i) , (13)

which says that the lost profit from jumping down exceeds the bid cost saving. This gives

conditions in terms of i+ 1’s equilibrium per click bid, as we now show.

In order to analyze per click bidding equilibrium conditions, we rewrite the above in-

equality in terms of per click bids and incremental per click profit values. To this end, write

the incoming click traffic to slot i when Firm i is there as Γi (i) = Π`<iγ`; when i has moved

down to position i + k its incoming clicks are Γi+k (i) = Π`<i+k+1γ`/γi, which reflects the

clicks on those firms i has promoted by dropping behind them. Hence, because i pays the

per click bid bi+1 of the next Firm i+ 1, its bid payments are Bi (i) = bi+1Γi (i). Likewise, to

get position i+k it drops its per click bid so as to pay the per click bid paid by the erstwhile

15These bids are to be determined endogenously in equilibrium from the profit and traffic statistics.
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incumbent, which is bi+k+1, so that i will pay Bi+k (i) = bi+k+1Γi+k (i) for jumping down k

slots. Define

IV i
i+k (j) =

πi (j)− πi+k (j)

Γi (j)
, j = 1, ..., n; i = 1, ..., n− 1; k = 1, ..., n− i (14)

as the Incremental Value to Firm j in position i over position i + k (k ≥ 1) per incoming

click to j at position i. This is the differential profit superiority on a per click basis. In these

terms, the condition on per click bids for no jumping down (rewriting (13)) is therefore

bi+1 − Γi+k (i)

Γi (i)
bi+k+1 ≤ IV i

i+k (i) , i = 1, ..., n− 1; k = 1, ..., n− i (15)

(where the Γ ratio is just γi+1 for k = 1, and is γk for common γ).

We proceed in an analogous manner for jumps up, with the aim of again getting a

condition in terms of the two bids on the LHS of the above equation. To do so requires

thinking of Firm i + k jumping up to position i with k ≥ 1, usurping the incumbent and

paying its bid. So, in terms of the total incremental cost-benefit, for Firm i+ k to prefer to

stay put requires

Bi (i+ k)−Bi+k (i+ k) ≥ πi (i+ k)− πi+k (i+ k) . (16)

In terms of per click bids, this condition is rewritten as

bi − Γi+k (i+ k)

Γi (i+ k)
bi+k+1 ≥ IV i

i+k (i+ k) , i = 1, ..., n− 1; k = 1, ..., n− i, (17)

where bi+k+1 is the per click bid paid by Firm i+k at the status quo, and bi is what it would

pay by bidding to take position i away from the incumbent (and the Γ ratio is just γi for

k = 1, and is γk for common γ).

The per click position equilibrium condition on the vector of b’s is therefore that the two

inequalities (15) and (17) hold for all possible jumps that these bids are strictly decreasing

(for slots are allocated by highest per click bids: note that we will find conditions to avoid

ties).

An Envy-Free equilibrium is a more restrictive one in which no firm would wish to move

if it were able to pay the per click bid paid by the firm whose position it would usurp.
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This concept was introduced as a “no envy” requirement by Edelman et al. (2007) and

as “symmetry” by Varian (2007). Notice that any jump down does already entail paying

(infinitesimally more than) the usurped firm’s bid, so the earlier Nash equilibrium condition

for jumps down (15) is the same as the envy-free one. For jumps up though, the envy-free

condition is stronger. For example, a firm contemplating jumping up one slot would actually

pay the per click bid of the firm above it, which is higher than its own bid in equilibrium,

whereas an envy-free equilibrium would entail it not wanting to make the jump if it could

pay its own bid. Envy-free equilibrium bids are therefore a subset of the Nash equilibrium

ones.

For an envy-free equilibrium, the no-jump-up condition is the only one modified. It just

involves replacing bi by bi+1 in the earlier condition (17). This yields the necessary condition

for no firm to want to jump up if it could do so and pay what the incumbent slot-holder

pays as

bi+1 − Γi+k (i+ k)

Γi (i+ k)
bi+k+1 ≥ IV i

i+k (i+ k) , i = 1, ..., n− 1; k = 1, ..., n− i. (18)

For k = 1, (15) and (18) provide conditions on neighboring bids that must hold in

equilibrium and which we term local envy-free equilibrium conditions. To interpret them,

consider the case when γ is common so that the bid sequence must follow the local IV

condition

bi+1 − γbi+2 ∈
[
IV i

i+1(i+ 1), IV i
i+1(i)

]
. (19)

The LHS of (19) is the extra bid payment (per click incoming to slot i) at slot i over slot

i + 1. The upper bound, IV i
i+1(i), is the extra revenue (per click incoming to slot i) that

Firm i gets in slot i over slot i + 1, and so represents the maximal increment i is willing to

pay for slot i over slot i+ 1. Firm i would not want slot i if it had to pay more. The lower

bound, IV i
i+1(i+ 1), is the extra revenue (per click incoming to slot i) that Firm i+ 1 would

get in slot i over slot i + 1, and hence is the maximal increment i + 1 is willing to pay for

slot i over slot i + 1. If Firm i + 1 were able to pay what Firm i pays (which is bi+1) then

i+1 would envy i were bi+1 any lower, even if Firm i+1 would not necessarily want to make
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the jump up, for bi will exceed bi+1: this feature underscores the idea seen in the three-firm

example below that other (non envy-free) equilibria can exist.16 So, while Firm i+ 1 would

be prepared to pay up to IV i
i+1(i + 1) for slot i, it does not want the slot if it had to pay

more.

We now provide conditions on IV’s (and hence on the underlying payoff structure) which

ensure that the local equilibrium conditions – those under which each firm does not want to

jump over or behind a neighbor – are also global so larger deviations are unprofitable too.

Lemma 2 Assume firms are ordered such that IV i+k
i+k+1 (i) ≥ IV i+k

i+k+1 (i+ k) for all i =

1, ...n − 1 and k = 1, ..., n − i. Then if one-step deviations down are not profitable, larger

downward deviations are not either.

Proof. Assume n ≥ 3. We wish to show that, for all i = 1, . . . , n − 1, if (15) holds for

k = 1, then (15) holds for k = 1, ...n− i. This is clearly true for k = 1.

Now we just need to show that, for i = 1, ..., n−2, if this is true for some k = 1, ..., n−i−1,

then it is true for k+ 1. If (15) holds for k then Firm i’s net profit is larger in slot i than in

slot i+ k so that

πi(i)− Γi(i)b
i+1 ≥ πi+k(i)− Γi+k (i) bi+k+1. (20)

From the lemma’s assumption, Firm i + k does not want to deviate to slot i + k + 1 so

bi+k+1 − γi+k+1b
i+k+2 ≤ IV i+k

i+k+1 (i+ k), where we have substituted in Γi+k+1(i+k)

Γi+k(i+k)
= γi+k+1

(for Firm i + k is jumping over its successor). The Lemma also assumes that IV i+k
i+k+1(i) ≥

IV i+k
i+k+1(i+ k), and hence

bi+k+1 ≤ γi+k+1b
i+k+2 + IV i+k

i+k+1 (i) ,

which delivers an upper bound for bi+k+1. Substituting this bound into (20) yields

πi(i)− Γi(i)b
i+1 ≥ πi+k(i)− Γi+k+1 (i) bi+k+2 − Γi+k(i)IV

i+k
i+k+1(i),

16The local IV condition pertaining to Firm i + 1, without the envy-free stipulation, is bi − γbi+2 ≥
IV i

i+1(i+ 1).
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with Γi+k+1(i) = γi+k+1Γi+k(i). Applying the definition of incremental values given in (14)

we obtain

πi(i)− Γi(i)b
i+1 ≥ πi+k+1(i)− Γi+k+1 (i) bi+k+2,

so Firm i does not want to deviate to slot i+ k + 1.

The result follows from a transitivity argument: “stronger” firms (under the IV condition

given) have more incentive to be ahead, so a stronger one will not prefer to jump down a

further slot if a weaker one would not.

An analogous construction for jumps up using (18) delivers the next result for envy-

free bids. The proof gives a simple two-step argument which the reader might find more

transparent than the full version (which is readily furnished along the above lines).

Lemma 3 Assume firms are ordered such that IV i
i+1(i+1) ≥ IV i

i+1(i+k) for all i = 1, ...n−1

and k = 1, ..., n− i. Then if no firm envies the firm that is in the immediately preceding slot,

then no firm envies any firm that is positioned in any slot earlier than its own.

Proof. Assume n ≥ 3. Consider some i = 1, ..., n − 2 where Firm i + 2 does not envy

Firm i + 1 and Firm i + 1 does not envy Firm i. If Firm i + 1 does not envy Firm i we

have bi+1 − Γi+1(i+1)
Γi(i+1)

bi+2 ≥ IV i
i+1(i + 1). Now if Firm i + 2 has moved up to slot i + 1 and

is paying bi+2, it would not envy Firm i either because IV i
i+1(i + 2) ≤ IV i

i+1(i + 1). Then,

because Firm i + 2 does not envy Firm i + 1, it does not envy i either. Applying the same

logic recursively implies that, for all k > 1, Firm i+ k does not envy Firm i.

The two lemmas jointly ensure that envy-free holds for any deviation if it holds for one-

step deviations. Each lemma requires a key assumption that compares incremental values

between firms positioned early and firms positioned late. To better understand the lemmas’

implications, suppose for the rest of this sub-section that all γ’s are the same (and we look

at a tighter restriction on demand parameters in the next sub-section to give the backdrop

to the subsequent results).

When the conditions given in the lemmas hold, and when the γ’s are identical, then any

bid sequence that satisfies no local envy will guarantee no global envy so that a necessary and
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sufficient condition for no envy is that (19) holds, i.e., bi+1−γbi+2 ∈
[
IV i

i+1(i+ 1), IV i
i+1(i)

]
.17

In order for the interval in (19) to be non-empty, we need IV i
i+1(i) ≥ IV i

i+1(i + 1). The

conditions used in Lemmas 2 and 3 do not suffice because they do not impose any restrictions

on how incremental values compare for two neighboring firms moving in front of one another.

Both lemmas’ assumptions are satisfied, along with the local incremental value restriction

that guarantees that locally envy free bids can be constructed from (19), if the order satisfies

a Strong Incremental Value condition that firms’ strength rankings (in terms of incremental

values) are the same for all pairwise position comparisons:

IV i
i+k(j) ≥ IV i

i+k(`) for all j < `. (21)

Even if the strong IV condition is satisfied, we still need to verify that the candidate bid

sequence is decreasing in the order to have an envy free equilibrium. This is illustrated by

the private value setting that we now discuss.

4.2 Private values and decreasing bids

Under private values, firms only differ by their quality qi so that the search appeal and

business stealing externalities are anonymous. They do not depend on which firms are

in front or behind, but only on j’s own quality and on slot i: Firm j’s profit in slot i is

πi(j) = (1− γ)γi−1(qj − (n− i)∆). Then incremental values are

IV i
i+k(j) = (1− γ)

(
(1− γk)(qj − (n− i− k)∆)− k∆

)
,

which increases in qj, so that a higher quality firm always benefits more from being placed

earlier. The strong incremental value condition therefore holds if (and only if) firms are

ranked by decreasing quality.18

17It then suffices for the existence of an envy-free equilibrium that the bids are decreasing in the order, a
condition to which we return below.

18If some Firm i has deviated down and demoted some other Firm i+k with lower quality, its incremental
value for not moving down one more step is higher than that of the firm it has replaced: IV i+k

i+k+1(i) ≥
IV i+k

i+k+1(i+ k), which allows Lemma 2 to be applied. Similarly, if some Firm i+ k does not envy some Firm

i before it (with higher quality), then IV i−1
i (i+ k) ≤ IV i−1

i (i) so Lemma 2 applies.
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The above discussion concerns conditions ensuring that firms neither want to deviate nor

envy each other. Equilibrium also requires that the bid sequence decreases in i. To gain

some intuition for the type of properties that would ensure this, consider the private value

setting when there is no search appeal so ∆i = 0, and each Firm i charges its monopoly price

qi. The incremental values are IV i
i+k(j) = (1 − γ)

(
1− γk

)
qj. We now show firms placed

later bid less if bids satisfy (19).

The largest possible value for bi+1, i = 1, ..., n − 1 (therefore the most stringent con-

dition) is obtained by taking the largest possible incremental bids up to bi+1. This en-

tails bj − γbj+1 = IV j−1
j (j − 1), for all j = i + 1, ..., n, and hence the highest value is

bi+1 =
∑n

j=i+1 γ
j−i−1IV j−1

j (j − 1). Since qi ≥ qj−1 for j > i + 1, bi+1 ≤ 1−γn−i

1−γ IV i
i+1(i).

From (19) bi − bi+1 ≥ IV i−1
i (i) − (1 − γ)bi+1 ≥ IV i−1

i (i) − (1 − γn−i)IV i
i+1(i) > 0 (because

IV i−1
i (i) = IV i

i+1(i)). Thus all bids decrease in i.

The argument uses the property that IV i−1
i (i) ≥ IV j−1

j (j − 1), whenever j > i. This

property is not related to the assumptions in Lemmas 2 and 3. Nonetheless, for private

values with no search appeal, it holds as long as products are ranked by decreasing quality

and this validates the lemmas. This property fails if ∆ > 0. For instance, if all products

have identical quality q, then IV i−1
i (i) < IV j−1

j (j − 1) for j > i because earlier firms charge

lower prices and the per click benefit from being placed one slot higher is increasing in price.

This difficulty arises for all settings we consider below.

The special case above of ∆i = 0 for all i (i.e., absent search appeal) is effectively the

setting of Varian (2007) and Edelman et al. (2007). These authors consider firms with

different per click valuations which are exogenous and independent of (and decreasing in)

slot position. This is the situation when ∆i = 0. Firm i charges pi = qi and its (per click)

incremental valuation is (1 − γ)qi independent of where it is, while the number of clicks at

slot j is just the probability that no preceding firms sells (which is γj−1). As seen in Section

3, joint profit and social surplus are maximized by ordering firms by quality. Consumers are

indifferent to how firms are ordered because any incremental quality accrues to the firm as

higher price.
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4.3 Ordering of products more generally: 3 firms and beyond

We now characterize the equilibrium outcome of the GSP (Generalized Second Price) auction.

The gist of the arguments and intuitions can be captured with three firms. We focus on this

simple case for the text discussion and only state the general n firms results and present the

full analysis in the Appendix. We start with the symmetric case as a benchmark and then

move to the analysis of the firms’ ordering when products are heterogeneous. Our analysis of

heterogeneous firms distinguishes two key dimensions of demand. The first is height, which

measures how much interested consumers are willing to pay, and is parameterized by qi and

∆i. The second is width, which measures the likelihood that a consumer is interested and

is captured by the product’s market potential, 1 − γi. We consider heterogeneity in these

dimensions in turn. With heterogeneity in height, the quantity sold in a given slot does not

depend on which firm is where whereas the price charged depends on where firms are. With

heterogeneity in width, the price charged in a given slot does not depend on where firms

are but the quantity sold does. Succinctly, with heterogeneity in height, firms differ in how

much they charge whereas with heterogeneity in width firms differ by how much they sell.

Suppose there are three slots to be allocated among three firms. Firm 1’s bid b1 is paid

by no firm and can be set as large as needed to deter Firms 2 and 3 from deviating to slot

1. Hence, the characterization of an equilibrium involves specifying per click bids b2 and b3

that satisfy 4 equilibrium conditions: Firm 1 should not want to drop to slots 2 or 3, Firm

2 should not wish to drop to slot 3 and Firm 3 should not wish to rise to slot 2. Using (15)

and (17), these conditions are respectively

b2 ≤ b̃2
(
b3
)
≡ γ2b

3 + IV 1
2 (1), (22)

b2 ≤ b̄2 ≡ IV 1
3 (1), (23)

b3 ≤ b̄3 ≡ IV 2
3 (2), (24)

b2 ≥ b2 ≡ IV 2
3 (3). (25)

Consider first the symmetric case with qi = q, ∆i = ∆ and γi = γ for all i. This is a

special case of the private value setting considered in the preceding subsection and there are
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3 relevant incremental values: IV 1
2 (1) = (1−γ)((1−γ)(q−∆)−∆), for a move from slot 2 to

slot 1, IV 2
3 (2) = IV 2

3 (3) = (1−γ)((1−γ)q−∆) for a move between slots 2 and 3 (which firm

moves is irrelevant because of symmetry), and IV 1
3 (1) = (1−γ)((1−γ2)q−2∆) for jumping

between slots 3 and 1. Recalling that incremental values are evaluated conditional on the

number of clicks at the early slot, their value is given by the increase in the “conditional”

probability that a consumer buys if the firm is placed earlier, ((1 − γ)(1 − γk) for a k-slot

jump, k = 1, 2), multiplied by the price in the later slot (q in slot 3 and q − ∆ in slot 2)

minus the decrease in price associated with being searched earlier (k∆ for k slots, k = 1, 2)

times the probability a consumer buys if the firm is in the earlier slot (1− γ).19 Throughout

(as per the earlier pricing analysis too), q is taken to be large enough that these incremental

values are strictly positive.

Figure 3a describes the set of bid combinations (b2, b3) delimited by conditions (22)-(25)

in the symmetric case,20 along with the requirement that b2 > b3 (which is implied by (24)

and (25)). Note that (23) is implied by (22) and (24) which illustrates that Lemma 1 indeed

applies in this private value setting (as discussed earlier) so that equilibrium conditions

for one-step deviations down suffice for ruling out all deviations down. Notice that the

equilibrium set is never empty if IV 1
2 (1) = IV 2

3 (3). This happens for ∆ = 0 so there always

exists an equilibrium for ∆ small enough. It is straightforward to check that the equilibrium

triangle is not empty as long as q is large enough, no matter how large is ∆. Intuitively, if q

is large, then the incremental value for jumping from 3 to 1 (which is also the value of b2 at

the top vertex, b̄2) exceeds the incremental value for jumping from 3 to 2 (which is the RHS

of (25), b2).

We establish equilibrium existence in the n-firm case (see Propositions 5 and 8 below) by

engaging the envy-free concept and using Lemmas 2 and 3. There are 6 conditions ensuring

no-envy, compared to the 4 equilibrium conditions (22)-(25): although a large enough b1

deters Firms 2 and 3 from deviating to slot 1, it does not prevent them from envying Firm

19Letting the “conditional” probabilities of buying in slots i and i + k, and prices in slots i and i + k be
denoted respectively Qi, Qi+k, and Pi, Pi+k, the IV is PiQi − Pi+kQi+k = Pi+k∆Q + Qi∆P , with ∆Q =
Qi −Qi+k and ∆P = Pi − Pi+k.

20By symmetry, we suppress the firm identity argument of the IV functions in Figures 3a and 3b.
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1 which pays only b2. However, Lemmas 2 and 3 apply as their incremental value conditions

hold in this private value setting and hence it suffices to take into account the 4 local one

step conditions, which are the downward-jump equilibrium conditions, (22) and (24), along

with (in general)

b2 ≥ b̂2
(
b3
)
≡ γ1b

3 + IV 1
2 (2), (26)

b3 ≥ b3 ≡ IV 2
3 (3), (27)

which respectively ensure Firm 2 does not envy Firm 1 and Firm 3 does not envy Firm 2.

As shown in Figure 3b, the set of envy-free equilibrium bids involve only two lines, and

valid bid combinations are on both lines and above the diagonal. This is because incremental

values do not depend on firm identity with symmetry and γ1 = γ2 so the RHS of (26) and

(27) coincide with those of (22) and (24) respectively. Then there is only one envy-free

equilibrium candidate, which is b2 = b̄2 = IV 1
3 (1) (because b̃2(b̄3) = b̄2 as shown in Figure

3a) and b3 = b3. Although this point always exists (as long as incremental values are

positive), it may not lie above the diagonal so we could have b2 < b3 (if IV 1
2 (2) is far enough

below IV 2
3 (2) and γ is small). However, b2 > b3 is guaranteed for q large enough (as was true

too for the equilibrium triangle in Figure 3a to not be empty: in both cases it suffices that

IV 1
2 (1) > IV 2

3 (2)). Indeed, the condition for IV 1
2 (1) > IV 2

3 (2) reduces to q(1 − γ)γ > ∆.

This is clearly true for q large enough. And, in concord with the analysis of Section 4.2, it

holds true for ∆ = 0.

Product heterogeneity, which we examine next, implies that incremental values do not

just depend on the two positions involved in a putative move. They also depend on the firm

which is contemplating a move, which firms are being jumped over, and which firms follow

the lower slot (firms placed before the upper slot are not relevant because incremental values

are normalized by the number of clicks in that slot).

4.3.1 Demand Height

Consider first heterogeneity in demand height only, so that γ1 = γ2 = γ3 = γ. The identity

of the firm which is jumped over and those following the lower slot affect the incremental
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value through the size of the change in the search appeal externality.

Assume that the joint profit maximizing order involves positioning higher quality prod-

ucts earlier: that is qi ≥ qj if and only if Φπ
i ≥ Φπ

j . Then, in an equilibrium that max-

imizes joint profit we have q1 ≥ q2 ≥ q3 and Φπ
1 ≥ Φπ

2 ≥ Φπ
3 . We now show that Lem-

mas 2 and 3 apply under these assumptions. With 3 firms, Lemma 2 merely requires that

IV 2
3 (1) ≥ IV 2

3 (2), or (1− γ) ((1− γ)q1 −∆3) ≥ (1− γ)((1− γ)q2 −∆3), and this is clearly

the case because q1 ≥ q2. To apply Lemma 3 we need to check that IV 1
2 (2) ≥ IV 1

2 (3) or

(1 − γ)((1 − γ)(q2 − ∆3) − ∆1) ≥ (1 − γ)((1 − γ)(q3 − ∆2) − ∆1). This is equivalent to

q2 + ∆2 ≥ q3 + ∆3. Now

q2 + ∆2 ≥ q2 + ∆2 − γ(q2 − q3) ≥ (1− γ)q3 + ∆3 + γq3 = q3 + ∆3,

where the first inequality follows from q2 ≥ q3 and the second inequality holds because

Φπ
2 ≥ Φπ

3 . From Lemmas 2 and 3 we infer that necessary and sufficient conditions for an

envy-free equilibrium are (22), (24), (26) and (27) along with b2 ≥ b3. Figure 4 shows the

envy-free region and the diagonal. Because Φπ
2 ≥ Φπ

3 we have IV 2
3 (2) ≥ IV 2

3 (3) and hence

the ordering of the two vertical lines, which are derived from (24) and (27). Similarly, the

positions of the two oblique lines induced by (22) and (26) follow from Φπ
1 ≥ Φπ

2 . Although

the envy-free region is clearly never empty, it is not guaranteed that there exist points in

that set that lie above the diagonal (for reasons similar to those already discussed in the

symmetric case). However, taking all q’s large ensures that the entire envy-free set satisfies

the desired bid ordering b2 ≥ b3.

As shown in the Appendix, these arguments generalize to n firms:

Proposition 5 Assume γi = γ for all i, qi ≥ qi+1 and Φi ≥ Φi+1 for i = 1, ..., n− 1. For qn

sufficiently large, there exists an envy-free equilibrium with Firm i in slot i and bids satisfying

bi − γbi+1 = IV i−1
i (i− 1), i = 2, ..., n− 1, (28)

with bn = IV n−1
n (n− 1).
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However, any other order can also be an equilibrium outcome if qualities and search

appeals are sufficiently similar (by continuity with the symmetric case). Under the assump-

tion in Proposition 5 that joint profit maximization requires placing higher quality products

earlier, other equilibrium orders are not joint profit maximizing and hence not envy-free

(because any envy-free equilibrium must maximize TIP when γ’s are the same.21) Nonethe-

less we now show that, if qualities are heterogeneous enough, then any equilibrium order

should approximately rank products in decreasing order of quality. This means that, under

the assumptions of Proposition 5, the equilibrium order should be approximately joint profit

maximizing. This also shows by means of a counter example, that the coincidence of the

decreasing quality order with joint profit maximization is necessary to ensure the existence

of a joint profit maximizing equilibrium.

For three firms, if qualities are different enough, then in equilibrium we must necessarily

have q1 > q3. To show this, the necessary equilibrium condition b2 ≤ b̄2 implies

(1 + γ)q1 − q3 ≥
∆3

1− γ
.

This requirement cannot be met if q3 > 2q1 with γ ∈ (0, 1) and ∆3 ≥ 0. Hence if qualities

are heterogeneous enough so that the larger of two qualities is at least twice the smaller one,

then the top firm always has a higher quality than the bottom firm in equilibrium.

The graphical intuition for these results is quite simple. If we start from the symmetric

case in Figure 3a and increase q1 or decrease q3, the vertical distance between both b̃2 (b3) and

b̄2 (the equilibrium conditions for Firm 1, (22) and (23)), and b2 (the equilibrium condition

for Firm 3, (25)) widens, which expands the equilibrium set. The reverse happens if q1 is

lowered while q3 rises. The only constraint on q2 in order for an equilibrium to exist is that

it should not be so small that b̄3 does not lie too far to the left (it should not be to the left of

the crossing point between b̃2 (b3) and b2 whenever these two constraints cross). This is why

there is no restriction on how q2 relates to the other products’ qualities, even when qualities

21When γ’s are the same the LHS of (15) and (18) are the same and so these inequalities directly imply
that any local envy free equilibrium maximizes TIP for each consecutive firm pair and so for all firms. The
local envy-free condition also implies TIP maximization for per impression bidding regardless of the γ’s but
not for per click bidding.
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are very heterogeneous.

Although this result allows for an order that is quite different from the quality order

with only 3 firms, it can be generalized to any number of firms. The following proposition

states that, with many firms, the equilibrium order must be approximately that of decreasing

product qualities and, under the assumptions of Proposition 5, joint profit is approximately

at its maximum: the proposition is proved in the Appendix.

Proposition 6 Assume γi = γ for all i and that for all i, j = 1, ..., n with i 6= j, either

qi > 2qj or qj > 2qi. Then, in any equilibrium, the product with the ith highest quality,

i = 1, ..., n is placed at slot i− 1, slot i, or slot i+ 1.

4.3.2 Demand width

We now look at heterogeneity in demand width alone, so that products only differ in terms

of market potential (and have common q and ∆). From Section 3, the preferences of firms

and consumers regarding the ranking of products are opposite. Joint profit maximization

requires that products with small market potentials (large γi) come first, whereas consumers

prefer the reverse.22

This is the source of product heterogeneity in Chen and He (2011) and Athey and Ellison

(2011). A firm’s profit depends not only on its position and its own product’s popularity,

but also on the popularity of the products sold by firms that precede it in the search order.

This is the business stealing externality (following Chen and He, 2011).23

In the models of Chen and He (2011) and Athey and Ellison (2011), each product meets

a consumer’s needs with some probability which differs across products and is identical for

all consumers. All products are sold at the same fixed price. This is replicated in our

framework with no search appeal and identical qualities, where the common price is the

22This is the case if the distribution of matches above q is reshuffled in such a way that βi and αi are
identical across products - as γi is decreased, it is possible to shift weight from vi = 0 to vi ∈ [q, q + ∆),
while concentrating it close enough to q so α and β do not change.

23The externality would introduce more substantial differences with the private value setting under per
impression bidding. This is because business stealing from earlier firms affects a firm’s profit through the
number of clicks it receives, so it does not affect the per click revenue whereas it would affect the per
impression revenue.
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common quality q and Firm i’s product meets a consumer’s needs with probability 1 − γi,

the market potential. They characterize an equilibrium of the generalized second price

auction where the more popular firms are positioned earlier so γi ≤ γi+1 for i = 1, ..., n− 1.

In their settings this is the preferred order for both firms and consumers. From Propositions

2 and 4 this is also the case in the model we consider. Note however that these preferences

are weak. Without search appeal and with identical qualities, total profit and consumer

surplus are unaffected by the search order. All products are sold at price q and total sales

are merely determined by the probability that at least one of the products suits a consumer’s

preferences, so that total revenue is independent of the firms’ order.24 Consumer surplus is

always zero because the expected surplus from buying one of the products is exactly equal

to the expected search cost.25 This preference becomes strict for consumers with ∆ > 0, still

assuming identical search appeal across firms, but it is reversed for firms: as discussed in

Section 3, total industry profit is larger when less popular products are positioned earlier.

Contrary to what happens when demand height is heterogeneous, the joint profit max-

imizing order cannot be sustained if there is too much heterogeneity in market potential.

The equilibrium necessary condition b̄2 ≥ b2 implies that

((1− γ2γ3)q − 2∆) (1− γ1)− ((1− γ2)q −∆) (1− γ3) ≥ 0. (29)

As q tends to infinity, ((1−γ2γ3)q−2∆)(1−γ1)
(1−γ2)q−∆

tends to

(1− γ2γ3)(1− γ1)

(1− γ2)
.

Now if 1 − γ1 < (1 − γ2)2, this is bounded above by (1 − γ2γ3)(1 − γ2) so that, for q large

enough, condition (29) requires

(1− γ2γ3)(1− γ2) ≥ (1− γ3).

However, 1 − γ2γ3 < 1, so the above cannot hold if 1 − γ2 < 1 − γ3. This illustrates

that if market potentials are heterogeneous enough (in the sense that the lower of two

24In Athey and Ellison (2011), profit is strictly larger with more popular products first because they
assume some heterogeneity in search costs. In Chen and He (2011) what is critical in maximizing joint profit
is that the three most popular products are in the top three slots.

25With ∆i = 0 in (11), we have αi = 0 and hence ΦCS
i = 0 for all firms.
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market potentials is less than the square of the larger one), then there is no equilibrium

with 1 − γ1 < 1 − γ2 < 1 − γ3 for q large enough. Hence it is not possible to achieve joint

profit maximization. This is readily generalized to n firms, which yields the next proposition

proved in the Appendix.

Proposition 7 Assume that q and ∆ are common and that for all i, j = 1, ..., n with i 6= j,

min{1−γi, 1−γj} < (max{1− γi, 1− γj})2. Then, for q large enough, there is no equilibrium

such that γi ≥ γi+1, i = 1, ...., n− 1 (the joint profit maximizing order).

By contrast, the reverse order - which is the one preferred by consumers - can always be

sustained as an equilibrium outcome (for q sufficiently large). It is straightforward to check

that Lemma 2 applies. Indeed, with 1−γ1 ≥ 1−γ2, we have IV 2
3 (1) = (1−γ1)((1−γ3)q−∆) ≥

(1 − γ2)((1 − γ3)q −∆) = IV 2
3 (2). Similarly, the incremental value condition for Lemma 3

holds because IV 1
2 (2) = (1−γ2)((1−γ1)(q−∆)−∆) ≥ (1−γ3)((1−γ1)(q−∆)−∆) = IV 1

2 (3).

However, in order for one-step envy-free constraints, (24) and (27) to hold, bids should satisfy

b3 ∈ [IV 2
3 (3), IV 2

3 (2)] = [(1− γ3)((1− γ2)q−∆), (1− γ2)((1− γ3)q−∆)]: if 1− γ2 > 1− γ3,

the interval is empty unless ∆ = 0, in which case both incremental values are equal to

(1 − γ2)(1 − γ3). In other words, there is no envy-free equilibrium sustaining this order

with large firms in front unless ∆ = 0. This is because, when looking at two consecutive

slots, the larger firm loses more from dropping its price if it is in front: this is also the logic

underpinning the optimal joint profit maximizing order, which has smaller firms positioned

early.

Our proof of the existence result for n firms (see Proposition 8 below) uses the property

that there exist envy-free equilibria with firms with large market potential positioned early

for ∆ = 0. Although we give below a more direct existence argument for three firms and any

∆ ≥ 0, we take a short detour to consider the case with no search appeal externality (∆ = 0).

It is illustrated by Figure 5a which shows the four local envy-free constraints. Constraints

(24) and (27) become a single vertical line because IV 2
3 (2) = IV 2

3 (3) for ∆ = 0. Constraints

(22) and (26) are depicted by the two oblique lines, where the steeper one corresponds to
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(22) because γ2 ≥ γ1 (product 2 is less popular). Note that, although the incremental value

is the same for Firms 1 and 2 (so the two intercepts coincide), the two constraints differ

because there is a difference in incremental cost: it is lower for Firm 1 moving in front of

Firm 2 than for Firm 2 moving in front of Firm 1 and this difference increases as the price

paid in slot 2, b3, increases (this is because Firm 1 is more likely than Firm 2 to have to

pay for a click if it is in slot 2). These two oblique lines cut the vertical line to determine

the segment of envy-free bid combinations. Interestingly, contrary to the envy-free set for

heterogeneous demand height, this segment is guaranteed to be above the diagonal because

IV 1
2 (1) = (1 − γ2)(1 − γ1)q ≥ (1 − γ2)(1 − γ3)q = IV 2

3 (2). We used a similar property to

establish that bids are decreasing in the private value setting with ∆ = 0 without having to

impose any further restriction on q.

We now return to the existence of an equilibrium for any ∆ ≥ 0 using the graphical

approach. Because Lemma 2 applies, we can omit equilibrium condition (23) and we need

only represent 3 constraints on the equilibrium set, which results in a triangle. It is depicted

in Figure 5b. First notice that b̄3 ≤ b2 (because 1−γ2 ≥ 1−γ3). Hence, (24) and (25) ensure

that the equilibrium triangle, if it exists, lies above the diagonal, so a sufficient condition for

the equilibrium set to be non-empty is that the top vertex is above b2. Since 1−γ1 ≥ 1−γ3,

a sufficient condition is

γ2(1− γ2)(1− γ3)q ≥ ((γ2(1− γ2) + (1− γ1)(2− γ2)− (1− γ3))∆,

which holds for q large enough. The next proposition generalizes the existence result to n

firms and is proved in the Appendix.

Proposition 8 Assume qi = q, ∆i = ∆ for all i, and γi ≤ γi+1 for i = 1, ..., n − 1. For q

sufficiently large, there exists an equilibrium such that Firm i is in slot i and bids satisfy

bi − γibi+1 = IV i−1
i (i− 1), i = 2, ..., n− 1, (30)

with bn = IV n−1
n (n− 1).
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At first glance, the bids in Proposition 8 (different γ’s) look like those in Proposition 5

(same γ’s). Indeed, both involve each firm bidding up to the highest point at which the firm

above does not want to drop down. But there are substantial differences. In Proposition 5

the equilibrium is envy-free for firms to be in the profit-maximizing order,26 and (weaker)

firms are bidding above their incremental values so that they would not want the higher slot

even if they got it at their own bid. The equilibrium in Proposition 8 is not envy free so

some firms - in particular, the bottom Firm n - would want to be higher if they could get

a higher slot at their own equilibrium bids, but are deterred by the sufficiently high bids of

stronger firms above.27 This means that the lowest firm bids below its value of the next slot

up in the equilibrium.

Proposition 5 extends the GSP auction results of Varian (2007) and Edelman et al. (2007)

to allow for search appeal externalities and moreover that these can be firm specific (the ∆i):

there exists an envy-free equilibrium that implements the TIP maximizing order. We go fur-

ther in Proposition 6 to argue that this order is robust in the sense that any equilibrium

must be “close” to this order (under the conditions given). Chen and He (2011) and Athey

and Ellison (2011), by suppressing pricing, also do not allow for search appeal externalities

(i.e. ∆i = 0 for them) but they do address heterogeneous business stealing externalities

(the γi). Then they find that the auction outcome orders firms by decreasing market po-

tential (which both maximizes TIP and consumer surplus).28 We find in Proposition 7 that

this order sustains when we allow for search appeal externalities (∆ > 0). However, it is

not TIP maximizing in the presence of search appeal, but instead has firms following the

order preferred by consumers. Proposition 8 shows that this is the robust order and TIP

maximization is not.

26As noted earlier, local envy-free is equivalent to joint profit maximization and so to global profit maxi-
mization. Any order that does not maximize joint profits cannot be sustained by local envy-free bids.

27To see that Firm n envies Firm n − 1, Firm n would get profit πn−1 (n) − bnΓn−1 if it could get the
higher slot at its own bid, as opposed to the status quo profit πn (n). It prefers the former if IV n−1

n (n) >
bn = IV n−1

n (n− 1), or q (1− γn−1)−∆ > q (1− γn)−∆, which is true because γn−1 < γn in the stipulated
order - stronger firms are earlier.

28Recall that Athey and Ellison (2011) assume heterogeneous search costs.
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5 Conclusions

Ordered search characterizes the lion’s share of the modern online economy, which is only

growing in importance. Yet research so far has been stymied for lack of a tractable set-up,

even in the symmetric case, let alone dealing with the full set of product distinguishers that

we do here. One main accomplishment of the paper is to deliver a clean analysis for ordered

search under asymmetry, which we effectuate by invoking a positive lowest willingness to pay

for interested consumers. We address three forms of asymmetries among firms’ products,

which are expressed as three key shape parameters which drive bids. Bids are determined

from incremental values and incremental costs from moving ahead. These values and costs

depend on own demand shape parameters and those of rivals jumped over. Each parameter

entails a different effect on other firms’ profits (position externality) when a firm bids for a

slot in a position auction.

First, higher quality earns higher profit earlier and entails no externalities, so higher-

quality firms bid more for earlier spots and so higher qualities get earlier slots, ceteris paribus.

This effect encourages maximal total industry profit (TIP).

Second, own search appeal has no effect on a firm’s own incremental profit from moving,

so it has no direct impact on bids. But a move up entails a positive profit externality on

all firms jumped over through increasing their prices. When a firm moves up it raises prices

now behind it. If the firms it jumps have high search appeal (which triggers a low price

in front), it suffers much in terms of lower price and so is less tempted to jump such firms

than jumping firms with low search appeal. This effect sorts to the back the firms with low

search appeal, which tends to promote TIP maximization but imparts a negative externality

on consumers.

We bring together these first two effects as demand height which impacts pricing. As

we show, if firms are the same in terms of demand width (the third parameter) the TIP-

maximizing order of firms is an equilibrium order in the auction and is also robust. This is

bad for consumers because prices are raised.

Third, demand width (market potential) induces the business stealing effect. Width
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directly affects firm incremental values (and incremental costs) as well as inflicting a negative

externality on the firms jumped over. The direct effect and the externality are stronger for

stronger firms. This observation helps understand why the TIP-maximizing outcome is

jeopardized when widths differ. Because the stronger-width firms tend to rise to the top,

consumers benefit but other firms’ profits suffer. As we show, when only widths differ the

order of firms that maximizes consumer welfare is an equilibrium to the position auction and

is moreover a robust order.

The analysis is facilitated by key properties of the model. The identities of those firms

coming before matters for the size of incoming demand, and the identities of those coming

after matters to equilibrium prices. However, the order in which predecessors or successors

are presented has no bearing on a firm’s profit at a particular position in the search order.

This key property enables us to determine summary statistics for firms, which are firm specific

and independent of position. These statistics enable us to determine optimal rankings of

firms that maximize total profits and consumer surplus. Comparing these rankings enables

us to determine the tensions between the various parties.

Establishing the existence of an incremental value bidding equilibrium (or indeed, any

equilibrium) is challenging in the presence of position externalities. In this regard, it is

noteworthy that despite the billions of dollars spent on position auctions, there is little

work beyond the classic 2007 papers and Gomes and Sweeney (2014) (which close down the

externalities), with the notable exceptions of Chen and He (2011) and Athey and Ellison

(2011) who assume prices are exogenous. Athey and Ellison (2011) conclude that the outcome

to the position auction is efficient for both firms and for consumers. However, our set-up

reveals tensions between orders preferred by consumers and those benefitting firms when

prices are endogenous. When demand height heterogeneity is dominant, consumer welfare

tends to take the back seat.

41



Appendix

A1 Results from Section 2

Claim 1 For any γi ∈ (0, 1), qi > 0 and ∆i > 0 there exists a distribution function Fi,

whose support has a maximum qi +Bi <∞, which satisfies (1).

Proof. It is useful to define, for all vi ≥ qi, δi = vi− qi: then the support of δi should be

a subset of [0, Bi]. Let F̄i be the distribution function for δi. We can then rewrite (1) using

Fi(v) = γi + (1− γi)F̄i(v − qi) for v ≥ qi as

(1− γi)
∫ Bi

∆i

(
1− F̄i(δ)

)
dδ = s. (31)

The left-hand side can be made arbitrarily close to (1−γi)(Bi−∆i) by moving all the weight

of the distribution of δi in the neighborhood of Bi (so that F̄i is nearly 0 on [0, Bi], except

in a small neighborhood of Bi) and, equal to 0, by shifting all the weight of δi below ∆i

(so F̄i(δ) = 1 for δ > ∆i). Furthermore, Bi − ∆i can be made as large as necessary by

increasing Bi. Hence, for any ∆i > 0, γi ∈ (0, 1), qi > 0 and s > 0, it is possible to find some

specification of F̄i such that (31) holds.

Lemma 1 Assume fi(qi) > 0 and vi − qi < Bi < ∞ for all vi ∈ S, i = 1, ..., n. If

consumers search optimally from Firm 1 to Firm n expecting all the firms to price according

to (3), then it is optimal for any Firm i to charge price pi defined by (3) as long as qi is

sufficiently large, i = 1, ..., n.

Proof. If Firm i < n charges its candidate equilibrium price pi, it earns per click profit

(1 − γi)pi. At this price, it sells to all consumers with strictly positive willingness to pay

for its product who have reached it. Hence, it cannot gain additional profit by charging a

lower price. Assume therefore that it charges a price that is ∆p > 0 in excess of pi. Its

corresponding profit is then at most

(pi + ∆p) (1− γi − (1− Fi+1(qi+1 + ∆i+1))(Fi(qi + ∆p)− γi)) .

This upper bound on deviation profit is obtained as follows. First, if Firm i deviates to

pi + ∆p, then all consumers with valuations less than ∆p in excess of qi search Firm i + 1
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(recall that at price pi consumers holding match qi with Firm i are just indifferent between

buying product i and searching on). Hence, the probability that a consumer who does not

search in equilibrium chooses to search Firm i+1 is Fi(qi+∆p)−γi. Among those searching

consumers, those with valuations vi+1 > qi+1 + ∆i+1 with Firm i + 1, strictly prefer buying

product i + 1 and never return to Firm i (indeed, since the equilibrium price difference is

∆i+1, those consumers would prefer buying product i + 1 even if Firm i had not increased

its price from its equilibrium level and they had chosen to search nonetheless). Hence, Firm

i’s demand at price pi + ∆p is at most 1− γi− (1−Fi+1(qi+1 + ∆i+1))(Fi(qi + ∆p)− γi) and

the profit gain from the price increase is bounded above by

∆p(1− γi)− (pi + ∆p)(1− Fi+1(qi+1 + ∆i+1))(Fi(qi + ∆p)− γi).

First consider a small deviation with ∆p close to zero. Because fi(qi) = F ′(qi),
Fi(qi+∆p)−Fi(qi)

∆p

tends to fi(qi) as ∆p tends to 0. Hence there exists δ̄ such that if ∆p < δ̄, then Fi(qi+∆p)−

Fi(qi) >
fi(qi)

2
∆p. Then, because Fi(qi) = γi, the benefit from deviating is bounded above by

∆p

(
(1− γi)− (pi + ∆p)(1− Fi+1(qi+1 + ∆i+1))

fi(qi)

2

)
,

which is negative if pi is large enough, since fi(qi) > 0 and Fi+1(qi+1 + ∆i+1) < 1.

Now take a large deviation, ∆p > δ̄. If follows that Fi(qi + ∆p) ≥ Fi(qi + δ̄) > γi. Since

a price above qi +Bi would yield zero profit, an upper bound for the deviation gain is

(qi +Bi − pi)(1− γi)− (pi + ∆p)(1− Fi+1(qi+1 + ∆i+1))(Fi(qi + δ̄)− γi).

From the pricing expression (3), price pi is increasing in qi and qi−pi does not depend on qi.

Hence, for qi large enough, the above upper bound on the profit change from a large price

increase is negative, so that such a deviation is not profitable.

The above arguments go through for i = n, where Fi+1(qi+1 + ∆i+1) is replaced by 1 (all

the consumers who give up buying product n at qn + ∆p select not to buy any product so

none of them return to Firm n).
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A2 Equilibrium ordering of n products (Section 4.3)

Here we provide the general analysis of equilibrium product ordering. We parallel the analysis

for 3 products in Section 4.3 text assuming there are n ≥ 2 products. We examine in turn

heterogeneity in demand height and heterogeneity in demand width.

A2.1 Demand heights

We first consider when all products have the same market potential while allowing for het-

erogeneity in base quality and search appeal. Each Firm j = 1, ..., n − 1 suffers a negative

externality which depends on the search appeal ∆` of all the firms ` = j + 1, ..., n − 1 that

follow it. The relevant cases for the equilibrium analysis below are when j is positioned

weakly earlier than i (which applies for downward deviations by j) and when j is positioned

weakly farther down than i + k (which applies for upward deviations by j). We have the

following expressions for the incremental value for Firm j for position i over i+k. For coming

down from an earlier slot:29

IV i
i+k(j) = (1− γ)

(
(1− γk)(qj −

∑
`>i+k

∆`)−
i+k∑
`=i+1

∆`

)
if j ≤ i, (32)

(because if some Firm j < i ends up in slot i, Firm i is promoted to slot i − 1) and for

coming up from a later slot:

IV i
i+k(j) = (1− γ)

(
(1− γk)(qj −

∑
`≥i+k;`6=j

∆`)−
i+k−1∑
`=i

∆`

)
, if j ≥ i+ k.

(because if some Firm j > i + k ends up in slot i + k, Firm i + k is demoted down to slot

i+ k + 1 and contributes to the search appeal externality in slot i+ k).

From equations (15) and (17) in the text, equilibrium conditions are

bi+1 − γkbi+k+1 ≤ IV i
i+k(i), i = 1, ..., n− 1, k = 1, ..., n− i,

and

bi − γkbi+k+1 ≥ IV i
i+k(i+ k), i = 1, ..., n− 1, k = 1, ..., n− i.

29For completeness, note that for i < j < i + k (a case that is not used in the analysis), we have

IV i
i+k(j) = (1− γ)

(
(1− γk)(qj −

∑
`>i+k ∆`)−

∑
i≤`≤i+k; 6̀=j ∆`

)
.
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Proposition 5 Assume γi = γ for all i, qi ≥ qi+1 and Φi ≥ Φi+1 for i = 1, ..., n − 1.

For qn sufficiently large, there exists an envy-free equilibrium with Firm i in slot i and bids

satisfying

bi − γibi+1 = IV i−1
i (i− 1), i = 2, ..., n− 1,

with bn = IV n−1
n (n− 1).

Proof. Incremental values of Firm j can be written out as the sum of a term that depends

on q only and a term that depends on ∆ only. Define Di
i+k(j) = IV i

i+k(j)−(1−γ)
(
1− γk

)
qj

which is a term that does not depend on qj and is decreasing in ∆` for all ` > i.

The argument for bids being decreasing in i builds on the corresponding analysis in the

private value case with ∆ = 0. In that case we derive a lower bound for the bid difference

bi−bi+1 ≥ γn−i(1−γ)2qi, which is strictly positive and linearly increasing in qi. To deal with

the case with ∆j ≥ 0 for all j > i, it suffices to add a term Dj−1
j (j − 1) to the incremental

values IV j−1
j (j−1) so the bid difference expression is modified by D̄ =

∑n
j=i γ

j−iDj−1
j (j−1)

which does not depend on any qj, j = i, ..., n. Hence, if qn is large enough so qi is as well,

the bid difference is indeed positive.

Let us now turn to showing that firms do not want to deviate to lower slots. The

specification of bids in (28) implies that Firm i − 1 is indifferent between staying in slot

i − 1 and moving down to slot i, for all i = 2, ..., n. Furthermore, because qi ≥ qi+k for all

i = 1, ..., n− 1, k = 1, .., n− k, IV i+k
i+k+1(i) ≥ IV i+k

i+k+1(i+ k) (notice that the two incremental

value expressions depends neither on ∆i nor on ∆i+k so only the quality differences are

relevant) and Lemma 2 applies, so Firm i− 1 does not want to deviate to any lower slot.

Finally, Lemma 3 can be applied to establish that no firm envies any firm that precedes

it so upward deviations are unprofitable. Indeed, Φi−1 ≥ Φi is equivalent to IV i−1
i (i− 1) ≥

IV i−1
i (i) so that the proposed bids ensure that Firm i would not want to move to slot i− 1

while paying bi. In order for Lemma 3 to apply we also need

IV i
i+1(i+ 1) = (1− γ)((1− γ)(qi+1 −

∑
j>i+1

∆j)−∆i)

≥ IV i
i+1(i+ k) = (1− γ)((1− γ)(qi+k −∆i+1 −

∑
j>i+1,j 6=i+k

∆j)−∆i),
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for i = 1, ..., n−2, k = 2, ...n−i. Because Φi+1 ≥ Φi+k, qi+1+∆i+1−γqi+1 ≥ qi+k+∆i+k−γqi+k
and using qi+1 ≥ qi+k we have qi+1 + ∆i+1 ≥ qi+k + ∆i+k. This is necessary and sufficient to

have IV i
i+1(i+ 1) ≥ IV i

i+1(i+ k).

Proposition 6 Assume γi = γ for all i and that for all i, j = 1, ..., n with i 6= j, either

qi > 2qj or qj > 2qi. Then, in any equilibrium, the product with the ith highest quality,

i = 1, ..., n is placed at slot i− 1, slot i, or slot i+ 1.

Proof. Consider some i = 2, ..., n − 1 and r = 1, ..., n − i. Equilibrium condition (15)

evaluated at k = r + 1 yields

bi − γr+1bi+r+1 ≤ IV i−1
i+r (i− 1)

and equilibrium condition (17) evaluated at k = r yields

bi − γrbi+r+1 ≥ IV i
i+r(i+ r).

With γ < 1, γr+1 < γr so we must have

IV i−1
i+r (i− 1) ≥ IV i

i+r(i+ r)

which requires that

(1− γr+1)(qi−1 −
∑
`>i+r

∆`)−
i+r∑
`=i

∆` ≥ (1− γr)(qi+r −
∑
`>i+r

∆`)−
i+r−1∑
`=i

∆`

Rearranging, we must have

(1− γr+1)qi−1 − (1− γr)qi+r ≥ (γr − γr+1)
∑
`>i+r

∆` + ∆i+r

The RHS is positive so the LHS should be positive as well, and we must have

1− γr+1

1− γr
qi−1 ≥ qi+r.

Now,
1− γr+1

1− γr
= 1 + γr

1− γ
1− γr

,
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which is decreasing in r. Hence it is bounded above by 1 + γ and this is at most 2 because

γ < 1. So we must have

qi−1 >
1

2
qi+r.

Under the assumptions in the Proposition this requires that qi−1 > qi+r. This must hold for

all i = 2, ..., n− 1 and r = 1, ..., n− i. So the result holds.

A2.2 Demand widths

We assume common ∆ ≥ 0 and common quality q high enough for all i. Products merely

differ as to how popular they are with consumers, as measured by the market potential

1 − γi for product i. Because of the business stealing externality, the exact formulation for

incremental values depends on where Firm j is positioned in equilibrium with respect to the

range of slots i to i + k impacted by the move that is being contemplated by Firm j. The

incremental value for some Firm j being placed in some slot i = 1, ..., n − 1 rather than in

slot i+ k, k = 1, ..., n− i is30

IV i
i+k(j) = (1− γj)

(
(1− Πi+k

`=i+1γ`)(q − (n− i− k)∆)− k∆
)
, if j ≤ i, (33)

for a firm that would have initially moved down to slot i, while

IV i
i+k(j) = (1− γj)

(
(1− Πi+k−1

`=i γ`)(q − (n− i− k)∆)− k∆
)
, if j ≥ i+ k, (34)

for a firm that would have initially moved up to slot i+ k.

Equilibrium conditions (15) and (17) in the text are

bi+1 −
i+k∏
`=i+1

γ`b
i+k+1 ≤ IV i

i+k(i), i = 1, ..., n− 1, k = 1, ..., n− i,with bn+1 = 0 (35)

and

bi −
i+k−1∏
`=i

γ`b
i+k+1 ≥ IV i

i+k(i+ k), i = 1, ..., n− 1, k = 1, ..., n− i,with bn+1 = 0. (36)

30Again, the case i < j < i + k is not relevant to the analysis: we would then have IV i
i+k(j) = (1 −

γj) ((1−Πi≤`≤i+k,` 6=jγ`)(q − (n− i− k)∆)− k∆).
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Proposition 7 Assume that q and ∆ are common and that for all i, j = 1, ..., n with i 6= j,

min{1−γi, 1−γj} < (max{1− γi, 1− γj})2. Then, for q large enough, there is no equilibrium

such that γi ≥ γi+1, i = 1, ...., n− 1 (the joint profit maximizing order).

Proof. Consider some i = 2, ..., n− 1. Equilibrium conditions (15) and (17) imply

IV i−1
i+1 (i− 1) ≥ bi − γiγi+1b

i+2 ≥ bi − γibi+2 ≥ IV i
i+1(i+ 1),

where the second inequality holds because γi+1 < 1. Hence we must have

((1− γiγi+1)(q − (n− i− 2)∆)− 2∆) (1− γi−1)

≥ ((1− γi)(q − (n− i− 1)∆)−∆) (1− γi+1),

or
(1− γiγi+1)(q − (n− i− 2)∆)− 2∆

(1− γi)(q − (n− i− 1)∆)−∆
(1− γi−1) ≥ (1− γi+1).

As q tends to infinity the LHS tends to (1−γiγi+1)
(1−γi) (1 − γi−1). Now if 1 − γi−1 ≤ 1 − γi then

the assumption in the proposition implies that 1 − γi−1 < (1 − γi)2, so for q large enough

equilibrium would require that

(1− γiγi+1) (1− γi) > (1− γi+1).

Because 1− γiγi+1 < 1 the above inequality cannot hold if 1− γi ≤ 1− γi+1.

Proposition 8 Assume qi = q, ∆i = ∆ for all i, and γi ≤ γi+1 for i = 1, ..., n− 1. For

q sufficiently large, there exists an equilibrium such that Firm i is in slot i and bids satisfy

bi − γibi+1 = IV i−1
i (i− 1), i = 2, ..., n− 1,

with bn = IV n−1
n (n− 1).

Proof. Incremental values can be written out as the sum of a term that depends on q only

and a term that depends on ∆ only. Define Di
i+k(j) = IV i

i+k(j) − (1 − γj)
(
1− Πi+k−1

`=i γ`
)
q

for j ≥ i + k and Di
i+k(j) = IV i

i+k(j) − (1 − γj)
(
1− Πi+k

`=i+1γ`
)
q for j ≤ i, which is a term

that does not depend on q and is decreasing in ∆.

We first show that bids that satisfy (30) are strictly decreasing in position i. To ease

notation, let di = Di−1
i (i = 1). For i = n−1, bi+1 = bn = IV n−1

n (n−1) and, for i = 2, ..., n−2,
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bi+1 = IV i
i+1(i) +

∑n−1
j=i+1

∏j
`=i+1 γ`IV

j
j+1(j) = (1 − γi)(1 − γi+1)q +

∑n−1
j=i+1(

∏j
`=i+1 γ` −∏j+1

`=i+1 γ`)(1− γj)q + di+1 +
∑n−1

j=i+1

∏j
`=i+1 γ`dj+1. Now, because (1− γj) ≤ (1− γi) for all

j > i we have bi+1 ≤ (1−
∏n

`=i+1 γ`)(1−γi)q+D̄ where D̄ =
∑n−1

j=i+1

∏j
`=i+1 γ`dj+1 (canceling

out terms in the sum). Thus we have

bi − bi+1 ≥ IV i−1
i (i− 1)− (1− γi−1)bi+1 ≥

n∏
`=i+1

γ`(1− γi−1)(1− γi)q + di + (1− γi−1)D̄.

The above lower bound on bid difference is strictly positive for q sufficiently large and it can

be made arbitrarily large by increasing q.

We now turn to showing that firms do not want to deviate to lower slots. The specification

of bids in (30) implies that Firm i− 1 is indifferent between staying in slot i− 1 and moving

down to slot i, for all i = 2, ..., n. Furthermore, because 1−γj ≥ 1−γj+k for all j = 1, ..., n−1,

k = 1, .., n − j, IV j+k
j+k+1(j) ≥ IV j+k

j+k+1(j + k) and Lemma 2 applies, so Firm i − 1 does not

want to deviate to any lower slot.

To deal with upward jumps consider a deviation upwards by some Firm i + k, i =

1, ..., n−1, k = 1, ..., n−i to slot i. Assume first ∆ = 0. Then we have IV i−1
i (i−1) = IV i−1

i (i)

and the bids defined by (30) ensure that Firm i does not envy Firm i − 1, for i = 2, ...., n.

Besides, for all k ≥ 1 we have 1− γi+k ≤ 1− γi. As a result, IV i
i+1(i) > IV i

i+1(i+ k). Hence,

for ∆ = 0, Firm i + k does not envy Firm i as a result of Lemma 3. That is to say, Firm

i+ k does not want to move to slot i even if it could do so while paying bi+1. Hence we have

bi+1 − Πi+k−1
`=i γ`b

i+k+1 ≥ IV i
i+k(i+ k),

or

(1− γi−1)(1− γi)q +
i+k∑
j=i+1

Πj−1
`=i γ` (1− γj−1) (1− γj)q ≥ (1− γi+k)

(
1− Πi+k−1

`=i γ`
)
q. (37)

Now consider some ∆ > 0. If Firm i+k deviates to slot i, it pays bi and this is not profitable
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if bi − Πi+k−1
`=i γ`b

i+i+1 ≥ IV i
i+k(i+ k) or, equivalently,

bi − bi+1 ≥ (1− γi−1)(1− γi)q +
i+k∑
j=i+1

Πj−1
`=i γ` (1− γj−1) (1− γj)q

+Di−1
i (i− 1) +

i+k∑
j=i+1

Πj−1
`=i γ`D

j−1
j (j − 1)

≥ (1− γi+k)
(
1− Πi+k−1

`=i γ`
)
q +Di

i+k(i+ k).

The above equilibrium condition differs from the envy-free condition (37) because of the bid

difference bi − bi+1 which is positive and can be made arbitrarily large by choosing q large

and because of terms on both sides that account for ∆ possibly being different from zero and

that do not depend on q. Hence, for q large enough, Firm i+ k does not want to deviate to

slot i, which completes the proof.
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[13] Haan, Marco A., José Luis Moraga-González and Vaiva Petrikaite (2018): A model

of directed consumer search, International Journal of Industrial Organization, 61(C),

223-255.

[14] Song, Hui (2017): Ordered search with asymmetric product design, Journal of Eco-

nomics, 121, 105-132.

[15] Varian, Hal R. (2007): Position auctions. International Journal of Industrial Organiza-

tion, 25(6), 1163-1178.

[16] Weitzman, Martin L. (1979): Optimal Search for the Best Alternative. Econometrica,

47(3), 641-54.

51



[17] Wolinsky, A. (1986). True monopolistic competition as a result of imperfect information.

Quarterly Journal of Economics, 101(3), 493-512.

[18] Zhou, Jidong (2011): Ordered search in differentiated markets. International Journal

of Industrial Organization, 29(2), 253-262.

52



vi+1

1-Fi+1(vi+1)

Bi+1 +qi+1

qi+1 +Δi+1

FIGURE 1: If price difference equals quality difference, pi = pi+1 + (qi − qi+1), 
consumer holding qi at Firm i will buy at Firm i + 1 if vi+1 ≥ qi+1
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b3

b2=b3
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𝑏2 = 𝐼𝑉3
2

FIGURE 3a: Equilibrium bid set (shaded) under symmetry.
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FIGURE 3b: Envy-free equilibrium bids under symmetry, (b2,b3) = (𝐼𝑉3
1, 𝐼𝑉3

2).
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FIGURE 4: Envy-free equilibrium bids (shaded) with 
demand height heterogeneity only
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FIGURE 5a: Envy-free equilibrium bid interval for heterogeneous 
widths, Δ=0, with firms ordered by decreasing market potential
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FIGURE 5b: Equilibrium bid set for heterogeneous widths with firms 
ordered by decreasing market potential
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