
Ordered Search: Equilibrium and Optimum1

Simon P. Anderson2 Maxim Engers3 Daniel Savelle4

University of Virginia, CEPR University of Virginia University of Mannheim

October 21, 2020
Preliminary and Incomplete

1We thank Volker Nocke, Nicolas Schutz, and Maarten Janssen for their invaluable
comments. The third author gratefully acknowledges financial support from the German
Research Foundation through the CRC TR 224 Project B03.

2Department of Economics, University of Virginia P.O. Box 400182, Charlottesville, VA
22904-4182, USA, sa9w@virginia.edu; also affiliated with CEPR.

3Department of Economics, University of Virginia P.O. Box 400182, Charlottesville, VA
22904-4182, USA, maxim@virginia.edu.

4Department of Economics, University of Mannheim, 68131 Mannheim, Germany,
dssavelle@gmail.com.

mailto:sa9w@virginia.edu
mailto:maxim@virginia.edu
mailto:dssavelle@gmail.com


Abstract

We introduce an ordered-search model with a heterogeneous consumer search-cost
distribution to model firm pricing with both consumer and firm heterogeneity. This
enables us to leverage recent theoretical results from differentiated-oligopoly theory
to provide a rich cross-section characterization of industry mark-ups, demand, and
consumer search patterns. We characterize the unique equilibrium with hidden prices,
with advertised prices, with positively correlated search costs, and when consumers
have idiosyncratic mean product qualities. For iid match-value distributions, firms
with higher quality-costs have higher equilibrium mark-ups but still sell more. Com-
paring optimal to equilibrium search, consumers search more products in a sufficiently
covered market, while consumers search less if firms are symmetric. Equilibrium pric-
ing compresses the distribution of search orders. These results are more pronounced
if prices are hidden compared to advertised: equilibrium pricing expands the distri-
bution of search orders. We next allow firms to differ in search accessibility and mean
quality, benchmarking so that the advertised price equilibrium is symmetric. Then
we find a composition effect under hidden prices that more accessible firms (with cor-
responding lower intrinsic quality) have lower mark-ups, higher demands, and tend
to be searched earlier and more often.

JEL Classifications: D43, D83, L13.

Keywords: Ordered search; discrete choice; hidden and advertised price equilibria;
search patterns; oligopoly cross-section; insufficient search



1 Introduction

Markets in which consumers actively search for what to buy abound. Search is typ-

ically sequential and systemically ordered by what consumers expect to find. They

search for suitable products and (sometimes) for product prices. Suitability can be

decomposed into mean expected quality and idiosyncratic matches, meaning that

products are differentiated. Different consumers typically search in different orders,

as can be explained by different search costs across consumers. On the firm side,

in imperfectly competitive markets in general firms’ prices and sales volumes differ

substantially. These differences can be ascribed to firms having different production

costs and intrinsically different consumer appeal through both mean expected quality

and their idiosyncratic match distribution, as well as (potentially) having search cost

advantages. These are the key ingredients of our contribution.

Our aim is to track how the exogenous variables – mean expected quality, idiosyn-

cratic match distributions, production costs, and search cost distributions – translate

into the endogenous variables which are prices and sales. We also characterize data

which are specific to the search context such as search probability, search orders, and

consideration sets. We compare equilibrium outcomes with the socially optimal pat-

terns in order to track how market forces distort allocations. To do so, we take the

central case of iid match values which has been the mainstay of the literature. We

then deliver the full gamut of cross-section equilibrium properties: our strong results

entail indexing firms by quality net of costs and then showing that mark-ups, sales,

and profits follow this index.

Consumer search for what to buy has always been a friction to market efficiency

but now the search process has much more visibility because of the much larger

effective range of opportunities for consumers to explore. The internet has allowed

access to many more readily available choices and interest in the economics of search

and firm pricing has mushroomed accordingly. Yet equilibrium properties have been

sparingly uncovered, even for seemingly simple symmetric cases and duopoly.

Ultimately, we are most interested in search with hidden prices, for there are so

few results of any type for this prevalent market form. For prices to be hidden means

that consumers do not observe them in advance, but instead must search to find

them and in equilibrium will rationally anticipate them. Equilibrium entails firms
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not wishing to deviate from the prices consumers expect, so the lack of incentive to

surprise and hold up consumers off the equilibrium path sustains the equilibrium. To

build up the analysis to this most challenging case, especially because we want to

deliver oligopoly characterization results for a full panoply of asymmetries, we begin

with discrete-choice models without search costs. We base our path to tractability on

this model. We next deliver results for advertised prices (so consumers search only

for product matches), for which there are also few results beyond the seminal works

of Haan, Moraga-González, and Petrikaitė (2018) and Choi, Dai, and Kim (2018).

This last paper does consider some asymmetries, and so our contribution could be

viewed as the logical next step from theirs; and we do crystallize the key insights for

the cross-section properties of equilibrium (for the central case of iid match distri-

butions). However, as explained further below, our device for attaining tractability

and equilibrium existence differs from theirs, although both rely on introducing extra

heterogeneity into consumer types. Specifically, they assume that consumers have

heterogeneous mean expected qualities but consumers share a single search cost, and

they can guarantee a pure strategy equilibrium exists (and their comparative static

results hold) only when heterogeneity is large enough. By contrast, we deploy het-

erogeneity in the distribution of search costs in a continuous manner which anchors

the limit case in the standard discrete-choice model and guarantees that a unique

pure strategy equilibrium always exists so our characterization results hold through-

out. We call our construction the conjugate search assumption because it judiciously

melds an appropriate search cost distribution with the match distribution. Indeed,

one main contribution of ours (on the path to the hidden-pricing model) is to deliver

such properties for the advertised-price model with firm heterogeneity. We next give

some background to our contributions leading up to the hidden-price model.

The literature on consumer search and firm pricing has provided several key in-

sights and innovations. It has been recognized how to engage the early results of

Weitzman (1979), who modelled consumer search as both sequential and ordered,

meaning that consumers search according to a (heuristically appealing) decision rule

of searching in decreasing order of search thresholds and stopping searching once she

observes a match value above all remaining search thresholds (and, if necessary, re-

turning to an earlier option). The second key advance is Quint (2014) fine treatment

of discrete-choice oligopoly pricing (absent search) with firm heterogeneity. Perhaps
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the strongest and most striking results in Quint (2014) are the clean and clear com-

parative static results and proof that a unique equilibrium exists assuming only that

match distributions are unbounded above and their distribution function and sur-

vival functions are log-concave. The third key advance was independently pioneered

by several authors, including Choi, Dai, and Kim (2018), Armstrong (2017), Arm-

strong and Vickers (2015), and is also implemented in Moraga-González, Sándor, and

Wildenbeest (2018). They present a novel transformation of the choices arising from

search by showing that a consumer selects the option with the highest minimum of

the search threshold and actual match value (even though, for some options, this

minimum is never observed by the consumer!). This transformation holds both with

advertised and hidden prices. The reformulation allows us to apply solution meth-

ods and comparative static results from Quint (2014) to ordered search using the

equivalent discrete-choice formulation.

Thus, demand looks like that for a standard discrete-choice model. We use this

equivalence along with the properties implied by the conjugate search-cost assumption

- namely, inheritance of log-concavity of relevant densities - to leverage Quint (2014)

results for standard discrete-choice pricing models in order to find price equilibrium

properties and deliver existence and uniqueness results under ordered search for both

advertised prices and hidden prices. When prices are advertised (or observed before

search) then search is for matches only and applying these results is quite straightfor-

ward, as Choi, Dai, and Kim (2018) already showed – once the key equivalence result

is engaged. While they suppose that consumers have idiosyncratic prior mean values

for products and common search costs, we consider common mean values and a dis-

tribution of search costs.1 It is substantially more challenging to apply the results to

hidden pricing, when search in equilibrium is just for matches, but then equilibrium

prices must be rationally anticipated, and this consistency condition entails that no

firm can raise its profit by deviating to unexpected prices and holding up consumers.

One major achievement of our paper is to establish the existence and uniqueness of

such an equilibrium.

We now provide some more background to advertised-price and hidden-price mod-

els by discussing existence and uniqueness issues, and how our approach elucidates

1Moraga-González, Sándor, and Wildenbeest (2017b) and Moraga-González, Sándor, and Wilden-
beest (2017a) also consider heterogeneous search costs.
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and solves them through our conjugate search assumption. Take first the advertised-

price model. It takes the hidden-price with match-search model of Wolinsky (1986)

and Anderson and Renault (1999) and appends (costless) price advertising in lieu

of hidden pricing. Strikingly, there is no literature on this prior to Choi, Dai, and

Kim (2018) and Haan, Moraga-González, and Petrikaitė (2018). As a benchmark

starting point, suppose all consumers have the same search cost and the same mean

expected quality. This set-up generates an ”Edgeworth-cycle” type situation; each

firm wants to be lower priced to get searched first, until it is better off not cutting

price further and prefers to sit back in second (or lower) position at a higher price.2

While there is match heterogeneity, this does not smooth out the problem of wanting

to undercut. But, further heterogeneity will do the trick (as indeed is recognized in

earlier existence problems in different contexts: e.g., the result of De Palma, Gins-

burgh, Papageorgiou, and Thisse (1985) holds under sufficient heterogeneity). While

we posit heterogeneity in search costs, Choi, Dai, and Kim (2018) use a distribution

of mean expected qualities. To apply Quint (2014) to show existence, they need the

distribution H of the ”effective values” satisfy the requirement that both its cdf Hand

survival function 1 − H are log-concave. While the latter holds generally, to prove

the former requires ”large enough” variation in mean values. Sufficient heterogeneity

does the trick.

We also add ex-ante heterogeneity of consumers, but we do so in a manner that

anchors the starting point at the (cost-free) discrete-choice model. By ensuring that

the distributions of thresholds and match values mesh we are able to show generally

the necessary log-concavity to allow us to apply Quint’s results. However, by so

anchoring, we go right to the heart of the structure of the ordered-search reformulation

and exploit that, so equilibrium existence and uniqueness are ensured everywhere.

Notice that it would not be possible to take a similar approach (moving from no

mean quality variation and then introducing it) because the undercutting problem

would still be present.

Now consider hidden prices. The classic reference is Diamond (1971) who showed

that the presence of even small search costs would unravel the market price up to the

monopoly price. This “Diamond Paradox” (where the term paradox connotes a logi-

2Choi, Dai, and Kim (2018) solve it in their Online Appendix C and note that it is surprisingly
tricky.
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cally correct conclusion that nonetheless disquiets the reader) begets multiple possible

solutions to address it. The one we build upon here is to introduce match heterogene-

ity which is not revealed before search, following Wolinsky (1986) for monopolistic

competition and Anderson and Renault (1999) for oligopoly. In Anderson and Re-

nault (1999) there exists a symmetric equilibrium (though requiring conditions on the

shape of the match distribution) when firms have the same mean expected quality,

with all firms setting the same price and consumers consequently searching randomly

among them. In contrast to the advertised-price case, such an equilibrium can exist

even without extra heterogeneity in search costs and/or mean expected qualities. The

critique in Armstrong (2017) is that there can also be asymmetric equilibria. This

point brings to the fore the consumer rational-expectation extra condition for equi-

librium, that expectations must be fulfilled. What has been hard to prove, beyond

specific examples in the literature (monopolistic competition with just one “promi-

nent” firm in Armstrong, Vickers, and Zhou (2009); uniform taste distribution in

Zhou (2011); taste distributions with mass points at zero in Anderson and Renault

(2020)) is that the early-searched firms actually want to set the low prices expected

from them. How robust a phenomenon is this multiplicity of (expectations-driven)

equilibria? One of our contributions in this regard is to show that with search-cost

heterogeneity there is a unique equilibrium as long as there is sufficient search-cost

heterogeneity or if the match distribution satisfies a regularity condition (a more

demanding log-concavity requirement).

Taking advantage of the uniqueness results allows us to characterize how firm dif-

ferences affect equilibrium firm pricing, sales and search behavior. If the match-values

are independently and identically distributed, firms with higher quality net of costs

set higher equilibrium mark-ups but nevertheless sell higher quantities. Comparing

optimal to equilibrium search, consumers search more in a sufficiently covered market,

while consumers search less if firms are symmetric. Equilibrium pricing compresses

the distribution of search orders. These results are more pronounced if prices are

hidden than if they are advertised: equilibrium pricing expands the distribution of

search orders. We next allow firms to differ in search accessibility and mean qual-

ity, benchmarking so that, if prices are advertised, the two effects exactly offset each

other and all firms would set the same price. Then, under hidden prices, we find

a composition effect that more accessible firms (with correspondingly lower intrinsic
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quality) have lower mark-ups, higher demands, and tend to be searched earlier and

more often than less accessible ones with higher intrinsic quality.

2 Ordered Search

We first introduce some notation. Given a real random variable Z, we denote its

cumulative distribution function by F so that F (z) = Pr[Z ≤ z] for any z ∈ R. We

denote the survival function of Z by G where G(z) = Pr[Z > Z] = 1 − F (z) , for

any z ∈ R. We often encounter powers of survival functions, expressions of the form

[G(z)]b, which we write as G(z)b when there is no ambiguity. As usual, E denotes

expectation with respect to the distribution of Z. If z ∈ R represents the known value

of an alternative option already held, the expected upside gain function, γ, gives the

expected net gain from being allowed to choose Z over z whenever this would be

beneficial, and it is the incremental expected value from a single extra search, so

γ (z) = E[max{Z − z, 0}].

Let Zsup (which may be infinite or finite) denote the supremum of the support of the

distribution of Z, so that F (z) = 1⇔ z ≥ Zsup, meaning that there is no value to a

search when the consumer already holds a better value than Zsup. Then γ is strictly

decreasing on the domain (−∞, Zsup), reflecting that smaller upside gains accrue on

better alternatives. Thus restricted, γ is a bijection from (−∞, Zsup) to (0,∞). Hence,

its inverse, denoted γ−1, is a strictly decreasing bijection from (0,∞) to (−∞, Zsup).

The function γ−1 transforms any positive cost level s into the associated threshold

level z = γ−1(s), so that if one were guaranteed a choice worth z, one would be just

willing to incur cost s in order to have the additional option of access to Z.

As shown later, the analysis will be greatly simplified if the distribution of search

costs is such that the distribution of the associated thresholds meshes neatly with

the distribution of the values of the underlying options. To take advantage of this,

for random variable Z with distribution F , we define the conjugate distribution of F ,

denoted by F s, where

F s(.) = G(γ−1(.)). (1)

We use subscripts on F, G, E, γ, and F s to indicate the underlying random variable

Z, if this is not clear from the context.
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There is a continuum of consumers, and a finite number n of products. Each

product i has price pi and exogenous mean quality qi. A consumer’s net value from

selecting product i is vi = qi − pi + εi. Initially, the consumer does not observe the

price pi or her (idiosyncratic) match value εi for each product i. Instead, consumers

anticipate a price of p̂i for product i and anticipate that the εi are independent random

variables with cdf Fεi(z) and E (εi) = 0.3 We later specialize to identical distributions

to get crisp equilibrium pricing results, but the extra generality is useful for now. To

reduce notation, let xi = qi−pi be the mean net value of product i and let x̂i = qi− p̂i
be the anticipated mean net value of product i.

Before search starts, each consumer knows her outside option value v0, which is

independently distributed with cdf F0 (z), and her search cost si for each product

i. We suppose that si varies from consumer to consumer but that qi and pi do

not. Paying the (non-refundable) search cost is necessary for purchase, and recall is

costless. Search is sequential. At each stage of the search process, a consumer chooses

whether to pay si to observe εi and pi for any product i or to terminate search. When

a consumer terminates search, she either buys a previously searched product or else

exercises the outside option. Consumers have passive beliefs about prices so they do

not update p̂j after searching i for any i 6= j.4 Each consumer aims to maximize her

expected payoff from search, denoted E[V ], where her payoff V is the value of her

final selection minus all search costs incurred.

Weitzman (1979) elegantly characterizes the solution to the consumer search prob-

lem as follows: the consumer assigns threshold values or scores to each option, and

searches through options in decreasing order until she finds a value exceeding the

scores of all remaining options. Notice that this process may involve returning to a

previously searched option. The Weitzman score for option i is defined by v̄i such

that

E[max{x̂i + εi − v̄i, 0}] = si,

so that the score v̄i is what the current best value would have to be to make the

3For simplicity, all cdfs (cumulative distribution functions) are assumed to be differentiable and
have a support over a convex set. The assumption of zero mean can readily be relaxed to the
requirement of a finite mean by renormalizing the levels of qi and v0. Together with the independence
of all match values and of all search costs ties will occur with zero probability in the search process
and can be ignored.

4Assuming passive beliefs is standard in oligopoly search models. As discussed in Janssen and
Shelegia (2018), this assumption about beliefs can be restrictive.
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consumer indifferent between searching i and terminating search if i were the final

unsearched option. The maximization operator embodies costless recall, so the LHS is

the incremental value expected above the score, accepted if and only if this increment

is positive. As Weitzman (1979) shows, this seemingly myopic stopping rule is optimal

even when there are further unsearched options.5

Setting z = v̄i− x̂i, the difference between the the score and the anticipated mean

value of the option, we can use the notation above to rewrite the score equation as

γεi (z) = E[max{εi − z, 0}] = si.

When the distributions Fεi are the same across options, the function γεi is the same,

even when the x̂i can be different.

Recall that γεi restricted to (−∞, εi) (where εi is the supremum of the support of

the distribution of εi), is strictly decreasing on this domain (−∞, εi) to (0,∞). Invert-

ing to find that z = γεi (si), the Weitzman score for option i in terms of anticipated

net value and search cost is

v̄i = x̂i + γ−1
εi

(si) (2)

(see also Armstrong (2017)). We adopt the notation of Armstrong where ri = γ−1
εi

(si)

so v̄i = x̂i + ri. Where relevant, we refer to ri is the accessibility score of i since it is

decreasing in the search cost of i.

We define search order to be the ordering of all products by scores, which deter-

mines the order of products that the consumer searches if sufficiently small match

values are observed for each product (except, possibly, the last, so that every prod-

uct is searched). Since thresholds are determined prior to search, this order does

not change based on observations during the search process since searching i does

not inform about the conditional utility of j. Let Σ be the set of all permutations

of {1, 2, ..., n} where each σ ∈ Σ represents a possible search order. Because of

search-cost heterogeneity, each search order occurs with positive probability and each

probability is continuous in anticipated and actual prices.

5Clearly the rule is optimal for the last search. For the penultimate one, and given the order of
search by v̄’s, either the outcome entails holding a value above the next v̄, in which case having the
last option is irrelevant, or the search did not yield a value above the last score, and the consumer
continues. In either case, the score rule holds for the last option regardless of what the penultimate
one uncovered, and its presence is irrelevant to the decision rule at the penultimate stage. The same
logic applies all the way back up the line. To add if possible: why the v̄ ranking is optimal (!)
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We define the set of modal orders Σm = arg max
σ∈Σ

Pr(σ) to be set of most likely

search orders. Suppose that all products share the same distribution of search costs

and they all share the same distribution of match values. If all products have the

same (anticipated) mean value xi = x, all search orders are equally likely.6 Now

suppose xi is strictly decreasing in i . Then there is a unique modal order, namely

(1, 2, ..., n). Notice that, as distinct from other ordered-search models, this is not the

only order that consumers use (merely the most likely one).

2.1 Eventual Actions: Demands, Search Volumes and Con-
sideration Sets

We can understand key model outcomes, like demands, by considering the eventual

actions a consumer would make prior to terminating search.7 As independently shown

by several authors, the demand for each product can then be written in an illuminating

and unexpectedly simple way, which we fully engage to deliver a tractable demand

system. The insight is to characterize each consumer’s final choice as the option for

which v∗i = min{vi, v̄i} is largest (where v∗0 = v0). We term the summary statistic v∗i
the effective value of product i.

Notice that if the score of i is above the effect value of j, then i would be searched

before j would be selected since v̄i > vj, v̄j. If the conditional utility of i is above the

effective value of j, then i would be selected before j would be selected conditional on

i being searched before j is selected since vi > vj, v̄j. Taken together, if the effective

value of i v∗i = min{vi, v̄i} is above all other effective values (including the outside

option value), then i is selected since i must be searched and selected prior to any

other product being selected. Let Di be the demand for i where Di = P[v∗i = max
j 6=i

v∗j ].

The structure of demand in the OSM is best illustrated with of the survival func-

tions of vi, v̄i and v∗i . The product of the first two is the survival function of the latter,

from which we can then find its cdf and derive demand in standard fashion. Recall

6Unlike in the symmetric model, random search is equivalent to an ordered search model where
all firms have the same threshold. These models require a uniform tie-breaking rule and have the
following tipping property: an arbitrarily small advantage (disadvantage) observed prior to search
implies that the advantaged (disadvantaged) firm is always searched first (last).

7For attribution of the result, we refer to Choi et al. (p. 1261). ”Our eventual purchase
theorem was anticipated by Armstrong and Vickers (2015) and has been independently discovered
by Armstrong (2017) and Kleinberg, Waggoner, and Weyl (2017).”
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that a random real random variable with cdf F , has a survival function G = 1 − F ,

so the survival function of εi is just Gεi = 1− Fεi . The survival function of vi = xi+

εi is

Gvi(z;xi) = Pr [vi > z] = Pr [εi > z − xi] = 1− Fεi(z − xi) = Gεi(z − xi).

The survival function of v̄i is Gv̄i(z; x̂i) = Gri(z − x̂i) = Fsi(γεi (z − x̂i)) because

Gri(z) = Pr[γ−1
εi

(s) > z] = Pr[s < γεi (z)] = Fsi(γεi (z)). (3)

Since vi and v̄i are independently distributed, the survival function of the effective

value, v∗i = min{vi, v̄i}, is the product of the score and conditional utility survival

functions:

Gv∗i
(z;xi, x̂i) = Pr[vi > z] Pr[ri > z] = Gεi(z − xi)Gri(z − x̂i). (4)

For simplicity, v∗0 = v0 where x0 = x̂0 = 0. We can employ the notation for v∗i ,

and the property that all effective values are independently drawn, to get:

Di = P[v∗i > max
j 6=i

v∗j ] =

∫ ∞
−∞

P[z > max
j 6=i

v∗j ]fv∗i (z;xi, x̂i)dz =

∫ ∞
−∞

Π
j 6=i
Fv∗j (z;xj, x̂j)fv∗i (z;xi, x̂i)dz

Let ωi = min{εi, ri} where Gωi(z) = Gεi(z)Gri(z). If the consumer correctly

anticipates xi, then Fv∗i (z;xi, xi) = Fωi(z−xi). Let DA
i be the advertised demand for

product i where all xi values are displayed to the consumer prior to search.

Di =

∫ ∞
−∞

Π
j 6=i
Fv∗j (z;xj, xj)fv∗i (z;xi, xi)dz =

∫ ∞
−∞

Π
j 6=i
Fωj(z − xj)fωi(z − xi)dz

This formula is similar to demands in a discrete choice model without search fric-

tions with conditional utility distributions replacing the effective value distributions

in the formula.

The effective values also describe consumer payoffs given correct anticipation of

all mean values. The proof for this is provided in Armstrong (2017) and Choi, Dai,

and Kim (2018) and relies on the property that optimal scores incorporate the cost-

benefit analysis of paying a search cost and possibly not selecting an option. With
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correct anticipation, we get that the expected utility of the consumer is the expected

value of the maximum of independent random variables:

E[u] = E[ max
i=0,1,..,n

v∗i ] =
n∑
i=0

∫ ∞
−∞

z Π
j 6=i
Fωj(z − xj)fωi(z − xi)dz

The eventual action arguments can also be employed to find the probability a

product is searched and the probability that a specific set is considered. To find the

conditions for a product i being searched, we need only think about the conditions

for i being searched before anything else would be selected. Unlike with the condition

for selection, which requires both the conditional utility and score of i to be above all

other effective values, product i is searched before any other product is selected if the

score for i is above the effective value of all of products. With correct anticipation of

all mean values, the search volume (probability of search) of i is

SVi = P[v̄i > max
j 6=i

v∗j ] =

∫ ∞
−∞

P[z > max
j 6=i

v∗j ]fri(z−xi)dz =

∫ ∞
−∞

Π
j 6=i
Fωj(z−xj)fri(z−xi)dz.

To get a measure of the overall search intensity in the model, SV =
∑n

i=1 SVi is the

mean number of searches.

The eventual actions argument can also provide insight into the probability that

a specific set of options is searched. Of particular interest to the marketing literature,

the consideration set Î in a search model is the realized set of products searched.

For simplicity, we include the outside option in the consideration set. Ignoring the

possibility of ties, similar to the eventual selection and eventual search arguments,

the set Î the exact set of options search and product i ∈ Î is selected if and only if all

options besides i that are considered have a higher score and lower conditional value

than the effective value of i and any option that is not searched has a score above the

effective value of i. It follows that the probability that Î is searched and i is selected

is

P[Î , i] =

∫ ∞
−∞

Π
j∈Î\{i}

Fεj(z − xj)Grj(z − xj)) Π
j /∈Î
Frj(z − xj)fωi(z − xi)dv.

While not the main focus of this paper, we return to P[Î , i] after introducing the

Conjugate Search-Cost Asssumption to establish conditions under which P[Î , i] is

log-concave in x.8

8Log-concave probabilities as a function of mean value parameters imply well-behaved log-MLE
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Summing over all i ∈ Î, we get the probability that the set of options Î is searched

is P[Î] =
∑

i∈Î P[Î , i]. This formula provides the distribution over consideration sets

in the ordered-search model.9 To find the conditions for a product i being searched,

we need only think about the conditions for i being searched before anything else

would be selected. While we do not return to consideration sets per-se in our equilib-

rium analysis, we show conditions under which search order is compressed/expanded,

and average searches increase/decrease which has implications for the underlying dis-

tribution over consideration sets. Note that any consideration set, order of search in

the set, and final selection for the set is possible and occurs with positive probability

given flexible support assumptions.

2.1.1 Search cost assumption

The general Ordered Search Model (OSM) remains quite intractable beyond some

rather special cases treated in the literature to date. AVZ consider a single “promi-

nent” firm and an infinite number of symmetric firms; Zhou (IJIO) assumes a uniform

match distribution, Anderson and Renault (2020) explicitly allow for asymmetries but

assume each firm’s product is either not liked at all or else has a sufficiently high value

that search stops there in equilibrium. These papers have made valuable headway

in stressing the role of “prominence,” which is a multiple-equilibrium phenomenon

adroitly remarketed. At its heart is a consistency condition that the first firm sampled

should also want to be lower priced to be sampled first, which generates a tension

between higher traffic and demand elasticity. Moreover, these papers have assumed

a single common search cost for sampling each firm. It seems reasonable that search

costs should differ across consumers, and across options.10 We aim to provide a

tractable formulation that can capture oligopoly interaction and describe equilibrium

for empirical work if individal observations of consumer behavior at the consideration set/selection
level.

9We use the term consideration set as the set of options actually searched. We might alternatively
construe it as the set that might possibly be considered be in an ex-ante sense: only those options
with scores above a consumer’s draw for the outside option, εO, have a positive chance of ever being
searched.

10An older literature deals with heterogeneous search costs which are different for different con-
sumers, but the same for a given consumer for all products. The tourists-natives model of Salop
and Stiglitz invokes some consumers (tourists) with positive search costs, while others (natives) have
zero search costs. Stahl (and follow-on papers) pursue this lead to derive mixed-strategy pricing
equilibria, although, in equilibrium, no consumer searches beyond the first firm sampled.
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performance (with a benchmark of a symmetric setting) while allowing consumers to

differ in the order in which they search. This allows us to find comparative static and

cross-sectional characterization properties by exploiting the link to classic discrete-

choice models (absent search costs) and engaging the oligopoly results pioneered by

Quint (2014). We can also address asymmetries and their impact on prices, both in

search costs biased toward individual firms, and in perceived qualities.

To do this, we exploit the structure of the reformulation of demand in terms of

the distribution of ω, and recall that the conjugate distribution of F is given by

F s(.) = G(γ−1(.)).

Conjugate Search-Cost Assumption

Given the distributions of idiosyncratic match values Fεi , the search costs si for

each product i are independently distributed and the cdf of si is the conjugate of

i ’s match-value distribution raised to the power bi > 0 where bi is the search-cost

parameter for i. Formally,

Fsi(z) = [1− Fεi(γ−1
εi

(z))]bi = Gεi(γ
−1
εi

(z))bi (5)

We therefore link the functional form of the search-cost distribution to that of

the match value distribution to get traction. We call the ordered-search model that

satisfies this assumption search the Conjugate Search Model, abbreviated as CSM.

While this assumption is clearly restrictive, one dimension in which it is not re-

strictive is in terms of the demand structures that the assumption permits. Indeed, as

we show below with a constructive proof, any demand system that could be obtained

via a classic discrete-choice model can be generated by an equivalent CSM. Moreover,

as well as matching any such demand system, we will show that the appropriate choice

of the bi parameters allows matching of any pattern of average search volumes across

firms. Notice that, as bi rises, Fsi falls (in the interior of its support) thus increasing

search costs in the sense of first-order stochastic dominance so that firms with lower

bi enjoy a search-cost advantage. As bi goes to zero, so do search costs and if all

bi converge to zero, the model converges to the underlying standard discrete-choice

model.

When the match-value distributions Fεi are identical, the search cost distributions

all take the form of the same function raised to possibly different powers, reflecting
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search-cost differences, or we can vary the common level to capture markets with

more or less severe search frictions. In the latter case, when all the xi and the Fεi are

the same, consumers are equally likely to choose any search pattern through firms,

while a higher bi for one firm will induce less search of it.11

Proposition 1 Under the conjugate search-cost assumption, the survival function

of ri is Gri(z) = Gεi(z)bi and the survival function of ωi is Gωi(z) = Gεi(z)1+bi. Thus,

Gv∗i
(z;xi, x̂i) = Gεi(z − xi)Gεi(z − x̂i)bi = Gωi(z − xi)

1
1+biGωi(z − x̂i)

bi
1+bi . (6)

Proof. Substituting the search cost assumption (5) Fsi(z) = Gεi(γ
−1
εi

(z))bi into the

OSM formula (3) Gri(z) = Fsi(γεi(z)) immediately yields the result for ri. The result

for ωi follows similarly.

As we see below, the simple form of these survival functions is what delivers

the tractability of the CSM for characterizing equilibrium properties under ordered

search. The survival function of v∗i is the weighted geometric mean of Gωi(z−xi) and

Gωi(z−x̂i) with relative weights bi
1+bi

and 1
1+bi

. Notice that Gv∗i
(z;xi, xi) = Gωi(z−xi)

is the correct-anticipation survival function of v∗i whereas Gv∗i
(z; x̂i, x̂i) = Gωi(z− x̂i)

is the survival function of v∗i the consumer anticipates prior to search. With correct

anticipation, the geometric mean simplifies since both survival functions are equal.

This geometric mean implies that

Gv∗i
(z;xi, x̂i)

∂xi

∣∣∣∣
x̂i=xi

= −fεi(z−x)Gεi(z−xi)bi =
1

1 + bi

∂Gωi(z − xi)
∂xi

=
1

1 + bi

∂Gv∗i
(z;xi, xi)

∂xi

for any z in the interior of the support. This property implies the the CSM is well-

behaved for small deviations from correct anticipation. Assuming fεi is continuous

over the reals12

Di

∂xi

∣∣∣∣
x̂i=xi

=
1

1 + bi

∂[Di|x̂i=xi ]
∂xi

11One illustrative special case pairs a uniform search-cost distribution (with bi = 1 for all i) with
an exponential match-value distribution. Specifically, suppose Fε is the exponential distribution with

distributional parameter a > 0, so Fε(z) = max{1 − e−az, 0}. For z ≥ 0, γ(z) = e−az

a . Moreover,
Fsi(s) = (as)bi for s ∈ [0, 1a ]. The example with bi = 1 is also in Armstrong (2017, JEEA, fn.9)..

12An alternative assumption is that demand is 0 conditional on a realized match value for i at the
bottom of the support. All of our later results that rely a continuous density over the reals can be
adapted by requiring the distribution of the outside option to have a sufficiency high lower bound.
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We leverage this property in a later section to solve markets with hidden prices.

Throughout this paper, we specify the CSM with (F0, [Fεi , bi]
n
i=1) to define demands

for each product as functions of x and x̂.

Assumption 1 Suppose f0 and each fεi are log-concave densities with a support that

is not bounded above.

Assumption 2 Suppose that each fεi is a continuous function over R. Additionally,

for option i, suppose that either bi ≥ 1 or
fεi
Gεi

is log concave.

Henceforth, we abbreviate these assumptions as A1 and A2.

Proposition 2 Suppose A1 holds. Each fωi is a log-concave density with a support

that is not bounded above. Applying Quint, advertised demand for i, lnDA
i , is concave

in xi and super-modular in xi and xj or j 6= i.

Additionally, suppose A2 holds. Each fri is a log-concave density with a support

that is not bounded above. If x̂j = xj ∀ j 6= i, then lnDi is concave in xi.

Proof. If A1 holds, then fεi is log-concave. A random variable with a log-concave

density f has a log-concave cdf F and survival function G, so Fεi and Gεi are log-

concave. Since Gωi = G1+bi
εi

, fωi(z) = (1 + bi)fεi(z)Gεi(z)bi . Log-concavity of a

function is preserved with function multiplication and with raising a function to a

positive power. Thus, fωi is a log-concave density with a support that is not bounded

above. It follows that the advertised demand with the CSM and A1 is identical to

demand in Quint (2014) where the first 2 assumptions in that paper hold, so the

demand properties from Quint apply to the advertised demand.

Since Gri = Gbi
εi

, fri(z) = bifεi(z)Gεi(z)bi−1. If bi ≥ 1, then the logic for ωi applies

for ri. Rearranging the formula, fri(z) = bi
fεi (z)

Gεi (z)
Gεi(z)bi so a log-concave

fεi
Gεi

implies

fri is log-concave. If x̂j = xj ∀ j 6= i, then

Di =

∫ ∞
−∞

∫ ∞
−∞

Π
j 6=i
Fωj(min{v, v̄} − xj)fεi(v − xi)fri(v̄ − x̂i)dvdv̄

With A1 and A2, each Fωj , fεi and fri are log-concave in (xi, v, v̄). Since the min

function is weakly increasing and concave, and v − xi is linear, each component of

15



the intergrand is log-concave in (xi, v, v̄), so the integrand is log-concave in (xi, v, v̄).

Log-concavity is preserved with integration so lnDi is log-concave in xi.

We will return to the condition that either bi ≥ 1 or
fεi
Gεi

is log-concave in the

hidden price section. While bi ≥ 1 requires a sufficiently high search cost parameter,

there are no restrictions on search cost parameters if
fεi
Gεi

is log-concave. Importantly,

both T1EV and reverse T1EV match value distributions have the property that
fεi
Gεi

is log-concave.13

The CSM also provides convenient search properties. To keep the main body

concise, we provide the properties in the next proposition, but leave the proof and

further discussion to the appendix.

Proposition 3 Suppose a CSM where f0 and each fv∗i are strictly positive over a

shared, measurable set (A1 is sufficient). Any consideration set combined with a

selection from the set and order of searching the set have a positive probability of

occurring.

Suppose A1 and A2 holds. Given correct anticipation of all mean values, the search

volume of i SVi, the probability that i is first in the search order, the probability that

i is last in the search order, and the probability Î is searched and i ∈ Î is selected are

log-concave in x.

Suppose A1 holds, and that Fεi = Fε and bi = b ∀i. Let x′ and x′′ be two possible

vectors of mean values where |x′i−x′j| ≥ |x′′i −x′′j | ∀i, j. The search order distribution

is more compressed 14 and, in a sufficiently covered market, SV is higher, if x = x′′

than if x = x′.

The first part of this proposition establishes that the CSM we consider in this

paper is robust to any plausible process of searching through the options. Ordered

search papers that solve hidden pricing with a large number of products, and most

papers that solve advertised pricing, have equilibrium outcomes where the consumer

always searches in the same order and does not return to past options.

The second part of this proposition establishes what happens to search orders and

search volumes if mean values become more compressed. This property is important

for the comparison of socially optimal pricing to hidden and advertised pricing in the

13See the appendix for a proof of this property for these two families of distributions.
14Define Compression

16



later sections. The third part establishes that the CSM is tractable for empirical work

where selections and consideration set are observable.

2.1.2 Generating Discrete Choice Demands

Armed with the results of Armstrong, we know that any OSM with correct anticipa-

tion can be reformulated as a demand and consumer payoff equivalent discrete choice

model. However, this insight does not provide the reverse argument that any discrete

choice model is consistent with a OSM with strictly positive search costs. To provide

this link, we show the CSM can be implemented as a constructive model to match

any DCM.

Consider a standard discrete-choice model without search frictions; consumer con-

ditional utility for option i is vi = xi + εDCi , and the match values are independent,

with distributions FDC
εi

and densities fDCεi
. We specify a DCM with (FDC

0 , [FDC
εi

]ni=1)

which maps x to demands and consumer payoffs. There is a useful, alternative method

to specify the CSM so that demands and payoffs are the same as in this DCM. Con-

sider a CSM where for each option i, bi = bri ≥ 0 and Gεi(z) = GDC
εi

(z)
1

1+bi . By

earlier work, Gri(z) = GDC
εi

(z)
bi

1+bi and Gωi(z) = GDC
εi

(z)
1+bi
1+bi = GDC

εi
. Thus, adver-

tised demands and payoffs are the same in this CSM and the DCM. Notice that this

method can match any DCM using any vector of br. Regardless of how the CSM is

specified, whenever we refer to an increase in the relative search cost of option i, we

are implicitly consider a comparative static exercise where Fωi is held constant and

bri increases.

Proposition 4 For any DCM, (FDC
0 , [FDC

εi
]ni=1) there is a continuum of CSMs with

correct anticipation which have the same demand and consumer payoff functions.

For any DCM and vector s̄ > 0, there exists an unique CSM with correct anticipa-

tion which has the same demands and consumer payoff functions where E[si] = s̄i ∀i.

While this proposition shows that there is a continuum of CSMs with the same

demand functions, the second part establishes that these demand-equivalent CSMs

have different underlying mean search costs and search patterns.

An immediate implication of this result is that any empirical or theoretical result

that uses a DCM to specify demands and consumer payoffs is consistent with a similar

model where demands and consumers payoffs are specified with a CSM. This includes
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any empirical exercise that uses logit or BLP, and any theoretic model that uses a

DCM. However, this proposition only holds for CSMs with correct anticipation. Once

the possibility of incorrect anticipation is considered, e.g. prices are hidden, the CSM

has a different demand structure. Elaborate. Provide more intuition.

2.1.3 Reverse Extreme Value Distribution

A particularly tractable functional form for the match-value distribution, which we

use as a running example, is furnished by the Reverse Extreme Value (REV) dis-

tribution. Although minimum extreme value distributions (also known as reverse

Gumbel distributions) are common in the statistics literature, they are rarely used in

economics. The REV was introduced in oligopoly by Anderson and de Palma (1999)

although they did not realize its full potential.15 It is ideally suited to studying or-

dered search due to the key role of the effective value, ωi = min{vi, ri}. Indeed, a key

property of the Type 1 Extreme Value (T1EV) distribution is that the maximum of

such distributions is also T1EV, i.e. the class is closed under the maximum operator,

which renders it so attractive for formulating extended discrete choice models. Anal-

ogously, the normal is closed under addition (and scalar multiplication). The REV is

closed under the minimum operator. Recall that the extreme value distribution is the

limit of the maximum of a sample of draws from some primitive distribution (such as

high-water levels for floods), and the Type 1 is the maximum domain of attraction

for a wide variety of primitive distributions, such as normal, exponential, lognormal,

gamma, Weibull, and the T1EV itself.16

The importance of the distribution of the minimum value for ordered search stems

15Anderson and de Palma (1999) defined a reverse discrete-choice model by writing the consumer
net value from selecting product i as vi = xi − εi, instead of vi = xi + εi.for the seed discrete-choice
model that generates the reverse one, but taking the same distribution for match values. Clearly,
when then the distribution is symmetric, the two are the same, so the reverse model is novel only
for asymmetric distributions, such as the Gumbel (Type 1 Extreme Value) that generates the Logit.
Misra (2005) considers the Reverse Logit for empirical marketing studies.

16Type I, II, and III extreme value distributions are respectively the Gumbel, Fréchet, and Weibull
families, and constitute the generalized extreme value (GEV) distribution (also known as the Fisher-
Tippett distribution) developed by McFadden (1978). The Gumbel distribution is also known as
the log-Weibull distribution and the double-exponential distribution (a term that is alternatively
sometimes used to refer to the Laplace distribution).

McFadden, Daniel. ”Modeling the choice of residential location.” Transportation Research Record
673 (1978).

18



from the salience of the effective value ωi in determining demand. Because ωi =

min{vi, ri}, if both the vi and the ri are reverse-Gumbel distributed, then so are the

ωi. Moreover, because of the Conjugate Search Cost Assumption, the loop is closed

by assuming the vi are reverse-Gumbel distributed, so that then the ri are too and

hence the ωi are too.

Formally, suppose that the match-value terms εi are independently distributes

with the (reverse Gumbel) distributions Fεi(z) = 1−e−eAiz for Ai > 0. Then Gεi(z) =

e−e
Aiz , and invoking the Conjugate Search Cost Assumption, the above proposition

yields Gri(z) = [e−e
Aiz ]bi = Gεi

(
z + 1

Ai
ln bi

)
and Gωi(z) = Gεi

(
z + 1

Ai
ln(1 + bi)

)
.

Moreover,

Gv∗i
(z;xi, x̂i) = e−e

Ai(z−xi)e−bie
Ai(z−x̂i) = Gεi(z +

1

Ai
ln(e−Aixi + bie

−Aix̂i)).

We now present some key properties of this demand system that we develop when

we present the equilibrium pricing models. We assume that the match-value distri-

butions are the same so that Fεi(z) = 1 − e−eAz for all i. To simplify notation, let

yi = x̂i − 1
A

ln(bi) and zi = − 1
A

ln(e−Axi + bie
−Ax̂i).

Lemma 1 Let P−i denote the power set of the set of options excluding i.

Di =

∫ ∞
−∞

Π
j 6=i

(1− e−e
A(v−zj)

)e−e
A(v−zi)+A(v−zi)dv =

∑
θ∈P−i

(−1)|θ|e−Azi

e−Azi +
∑
j∈θ
e−Azj

SVi =

∫ ∞
−∞

Π
j 6=i

(1− e−e
A(v−zj)

)e−e
A(v−yi)+A(v−yi)dv =

∑
θ∈P−i

(−1)|θ|e−Ayi

e−Ayi +
∑
j∈θ
e−Azj

P[Î , i] =
∑

θ∈P−i∗

(−1)|θ|e−Azi

e−Azi +
∑

j∈(θ∪Î)
e−Ayj +

∑
j∈(θ∩Î)

e−Axj

The proof is in the appendix. Importantly, we use the results of this lemma in

the correlated search cost sections after the advertised and hidden pricing have been

outlined and solved with more general assumptions.
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3 Price equilibrium properties

3.1 Standard Discrete Choice Models: extant and further
results

We start here by distilling from Quint (2014) two key characterization properties of

price equilibrium. These results are of independent interest, for they describe pat-

terns in mark-ups, equilibrium sales, and profits for oligopoly. The first one is simply

that only each firm’s quality-cost (to be read as quality minus cost) matters to equi-

librium pay-offs, and not the composition of quality and cost. This is true even when

match values are (independently) distributed across firms differently. The second one

crystallizes cross-section equilibrium firm rankings in the economic variables above in

the familiar setting of most of the literature when match values are i.i.d. Specifically,

indexing firms by decreasing quality-cost determines that rankings of mark-ups, sales,

and profits follow the index.

Let xi = qi−pi denote mean net quality (to consumers) for Firm i with (constant)

marginal cost, ci, so that firms are allowed to differ by quality and cost. Firm i’s profit

is πi = (pi − ci)Di, where product i is selected if vi > vj for j 6= i, so demand is

DDC
i =

∫ ∞
−∞

Π
j 6=i
Fεj (z − xj) fεi (z − xi) dz. (7)

The pricing game is strategically equivalent to one in which firms set their markups

mi = pi−ci, so we can write πi = miDi where demand for each product is determined

by the mean values xi = qi − ci −mi across all products. Therefore we can combine

qi and ci into a single dimension of heterogeneity, the net quality q̄i = qi − ci, the

difference between quality and cost. Therefore a commensurate change in firm’s

quality and cost has no effect on its mark-up or sales and no effect on other firms.

We assume that each fεi (.) is log-concave with a support that is unbounded

above. Quint (2014) assumes the weaker condition that both Fεi (.) and Gεi (.) are

log-concave, which is implied by log-concavity of fεi (.). Under these conditions,

he shows that there exists a unique Bertrand-Nash (price) equilibrium. Moreover, he

proves various comparative static properties, which we adapt to establish the following

cross-sectional properties.17

17Quint (2014) extends beyond these tools to characterize price competition where products involve
component parts with individual prices.
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We summarize the key properties from Quint, then show the specific argument

behind uniqueness of a pricing equilibrium which we adapt in later sections to address

consumer search. In this section and future sections, we introduce properties before

specific sufficiency conditions for these properties since a similar set of properties hold

in many of our models with different, but related, sufficiency conditions.

Property 1 (General Pricing Properties) There exists a unique price equilib-

rium. The equilibrium mark-up and mean effective value of firm i is increasing in

its own net quality. All other firms’ equilibrium mark-ups are decreasing in the net

quality of i and all other equilibrium mean effective values are increasing in the net

quality of i.

These comparative static and existence properties represent a major advance for

the theory of discrete choice oligopoly with firm asymmetries. The following propo-

sition presents the relevant results from Quint (2014).

Proposition 5 (Quint) Suppose f0 and each fεi are log-concave densities with a

support that is not bounded above. The general pricing property holds.

Moreover, the general pricing property holds with these conditions when firms have

profit functions of the form πi = (pi − ci)NiDi for Ni ≥ 1.

Proof. Assumptions 1 and 2 from Quint (2014) are satisfied under the log-concavity

conditions given. Lemma 1 and Theorem 2 from Quint imply the general pricing

properties including the generalized profit functions.

The usual benchmark in discrete choice models involves i.i.d. match distributions,

we now show how Quint’s (2014) comparative statics results can be used to give

strong characterization results of equilibrium cross-section properties for this case.

Assume that Fεi = Fε for all products. Label firms by decreasing quality-cost so that

q̄1 ≥ q̄2... ≥ q̄n where q̄i ≡ qi − ci denotes net quality. We refer to a model (discrete

choice model or CSM) as a net quality index (NQI) model if firms are indexed on net

quality and are symmetric except in net quality (symmetric match value distribution

and, where relevant, symmetric search cost distribution).

Property 2 (NQI Pricing Properties) In the net quality index model, lower-indexed

firms have higher mark-ups, higher mean values, and hence more sales and more
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profit. Moreover, for any two products i < j, the mean difference in effective values

(xi − xj) is weakly less than the mean difference in net quality q̄i − q̄j.

To establish the NQI pricing property, we consider the NQI model and apply the

general pricing properties to this setting.

Proposition 6 Suppose an NQI DCM where f0 and fε are log-concave with a support

that is not bounded above. The general pricing properties and the net quantity indexed

pricing properties holds.

Proof. Consider two firms i and j with different net qualities, so, without further

loss of generality, suppose that q̄i > q̄j. Perform the comparative-static exercise of

reducing i’s quality until it is equal to q̄j. As per Quint (2014), i’s markup falls and

j’s rises. Moreover, xi − xj decreases. But, after the change these firms share the

same level of q̄ and hence their mark-ups and mean values must be equal. If these

mark-ups were not equal, by switching the markups between these now-identical

firms we would get more than one equilibrium, a contradiction to the uniqueness of

equilibrium. Thus, in the original situation, i’s markup and mean value must have

been higher. Because the argument applies to any pair of firms, it must be that higher

net-quality firms charge higher equilibrium mark-ups and have higher mean values

at any equilibrium, and hence more sales and more profit. Since higher net quality

firms have higher markups, |xi − xj| ≤ |q̄i − q̄j| for any i and j.

These results constitute a significant extension to log-concave densities of the

analogous properties in AdP01, who were able to deal with Logit only. In particular,

firms can be ranked by a simple one-dimensional index, quality-cost, and a firm with a

higher quality-cost enjoys both a higher equilibrium mark-up and a higher equilibrium

demand, for these two variables are linked by the first-order conditions. For example,

if all costs were the same, firms with higher prices have higher quantities demanded

which, at first glance, would seem to violate the law of demand. The explanation is

that both are driven by an underlying quality advantage.

These cross-section properties also hold when we introduce search costs, and they

hold both when prices are advertised and when they are hidden from consumers before

search.
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3.2 Advertised prices

We now analyze the equilibrium when there are search costs that satisfy the conjugate

search cost assumption. In this section, we assume that firms advertise prices and

consumers observe these prices costlessly, so that it is only the match values that

require costly search. This analysis is a useful stepping stone to the model with

hidden pricing, but it is also of independent interest. In particular, Choi, Dai and

Kim (2019) have argued that this is an empirically relevant information structure.

They were also able to use the results of Quint to deliver comparative static results for

the model, and they deployed the insight (also found by Armstrong et al.) that the

demand model can be written in terms of the distribution of effective values (ωi’s).

Indeed the logic for deriving the classic discrete choice demand model (??) applies

by replacing Fεi (.) by Fωi (.). As earlier,

DA
i =

∫ ∞
−∞

Π
j 6=i
Fωj (z − xj) fωi (z − xi) dz (8)

In a nutshell then, we can immediately see that the models are identical when

the distribution of match values εi in the discrete choice model is the same as the

distribution of effective values ωi in the ordered search model with advertised prices.18

Proposition 7 Suppose a CSM where A1 holds and prices are advertised. The gen-

eral pricing property holds.

With the added assumption that fωi is the same for all products and firms are

indexed on q̄, the net quantity indexed pricing property holds.

Proof. With advertised prices, the game is demand and payoff equivalent to a pricing

game with the reformulated discrete choice model. If A1 holds, then proposition 5

implies that the general pricing properties hold. With the added assumption that fωi
is the same for all products and firms are indexed on q̄, the net quality indexed pricing

property also holds since the equivalent discrete choice model meets the requirements

of proposition 6.

These results exactly parallel the earlier results for discrete choice models. Im-

portantly, if the match value density fεi is log-concave with a support that is not

18Notice that the distribution of Fωi (.) for the advertised-price ordered search model approaches
the distribution of the underlying match values as search costs vanish, for then the thresholds
approach infinity and all options are searched.
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bounded above, then fωi is log-concave with a support that is not bounded above

for any bi value. For the indexing results, if all products have the same match value

distribution and search cost parameter, then all products will have the same effective

value distribution. While this is a sufficient condition, any combination of match

value density and search cost parameter that results in the same effective value dis-

tribution is adequate for the indexing results with respect to prices, mean effective

values and demands.

By considering the net quality indexed CSM where all products have the same

match value distribution and search cost parameter, we can establish new and intu-

itive results for advertised pricing with regards to the search process.

Property 3 (NQI Search Properties) In equilibrium, the modal search order is

the index (up to ties in net quality) and the distribution of search orders is more

compressed than with socially optimal pricing.

In an uncovered market where all products have the same net quality, all search

orders are equally likely and there is a lower equilibrium mean search volume than

with socially optimal pricing.

In a covered market where firms differ in the net quality, there is a higher equilib-

rium mean search volume than with socially optimal pricing.

These properties hold in the advertised price game since the NQI pricing results

imply that mark-ups are positive and are higher for firms with a higher net quality.

Thus, the search results here illustrate a valuable extension of discrete choice models

to equivalent CSMs which explicitly consider search.

Proposition 8 Suppose the NQI CSM with advertised prices where A1 holds. The

General Pricing Properties hold, the NQI Pricing Properties hold, and the NQI Search

Properties hold.

Proof. With the NQI CSM where f0 and fω are log-concave with a support that is

not bounded above, proposition 7 implies that the general and NQI pricing properties

hold. NQI pricing properties establish that mark-ups are positive, |x∗i − x∗j | < |qi −
ci− qj + cj|∀i, j and that x∗i is decreasing in i. Score distributions for all products are

the same up to the shift in mean due to xi’s. Since each x∗i is weakly decreasing in i,

the modal search order is the index (up to ties in net quality). Since |x∗i −x∗j | < |qi−
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ci − qj + cj|∀i, j, the search order is more compressed than socially optimal. Positive

markups imply that there is less search than is socially optimal in an uncovered

symmetric market. With a covered market, Proposition 4 implies that there is more

search than is socially optimal due to the compression in mean values.

To consider mean search volumes in the NQI CSM, we show stark properties with

two extreme assumptions. In a symmetric net quality model, all firms have the same

positive mark-up so the outside option is more attractive and there is less search. In

a covered market (no outside option) with asymmetric net qualities, the compression

in effective values and thresholds relative to socially optimal pricing implies that a

consumer searches more products on average. This property follows from higher net

quality advantaged firms cannibalizing their prominence so a consumer is less likely

to find a sufficiently high match value early in the process. Combining these two

results, a uncovered market with net quality heterogeneity across products may have

higher or lower search volumes with advertised prices relative to socially optimal

prices depending on which of these effects dominates.

The net quality index results rely on all firms having the same underling com-

position of match values and search costs. Before moving on to hidden prices, we

consider an index model where search composition varies. To understand the role

of composition in the CSM, consider the scenario where all firms have the same net

quality and the same effective value distribution fωi = fω, but vary across their match

value distribution and search cost parameter where Fεi = 1− (1− Fω)
1

1+bi . We refer

to this set of assumptions as the composition index CSM where firms are indexed

by bi with lower bi products occurring earlier in the index. For advertised pricing,

the underlying composition does not effect the pricing incentives of the firm, but is

relevant for search patterns.

Proposition 9 Suppose the composition index CSM where A1 holds.

Equilibrium mark-ups and mean effective values are symmetric. The modal search

order follows the index, there is less search than is socially optimal, and the search

order distribution is also the socially optimal search order distribution.

Proof. For advertised pricing, a change in the composition of a product is not

relevant for firm profits since advertised demands are constant in the relative search

costs. Uniqueness implies symmetric prices or else switching two assigned equilibrium
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strategies would constitute a new equilibrium. Since all prices are symmetric, the

socially optimal search order distribution is preserved. Since there is a symmetric

mark-up, there is less search than is socially optimal.

While this model provides some insights into the role of search composition in

markets, this model provides particularly stark results when hidden prices are con-

sidered.

4 Hidden prices

Now we introduce hidden prices where the consumer only observes the price of a

product after searching that product. A PSNE in the hidden price game is a vector

p∗ such that the consumer anticipates p∗ and no firm i is better off deviating from p∗i
given the equilibrium prices of other firms and the anticipated vector of prices is p∗.

Due to the possibility of incorrect anticipation for firm deviations, extending Quint

to this setting requires additional work which follows two related arguments. First,

we show that each firm has a unique best response to any candidate equilibrium

p. Then we prove that there is exactly one equilibrium in the hidden price game

which corresponds to a equivalent static, discrete choice pricing game in which general

pricing properties hold.19

Consider the deviation of a single firm from a potential equilibrium p where the

consumer anticipates p and all other firms follow their assigned price strategy. (add)

By this logic, we get the following result.

Proposition 10 Suppose that f0 and each fωi are log-concave densities with a support

that is not bounded above. Additionally, for firm i, suppose that either bi ≥ 1 or
fεi
Fεi

is log concave for each firm i.

For any vector of other prices p−i that are correctly anticipated by the consumer,

and anticipated price p̂i for product i, i’s profits are log-concave in pi and there exists

a unique profit maximizing price for firm i.

Proof. For Proposition 3, if A1 and A2 holds and all other mean values are correctly

anticipated, then Di is log-concave in pi. Thus, lnπi = ln(pi−ci)+lnDi is log-concave

in pi with a unique FOC which is the maximum.

19Quint uses a similar approach to solve a game with component prices. In his paper, there is a
distortion due to individual component pricing incentives.
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Notice that this proposition implies that with sufficient conditions, there is always

a unique interior maximum. Thus, if first order conditions hold for all firms at a

candidate equilibrium (p = p̂), then this candidate equilibrium is an equilibrium.

We use this property to establish existence and uniqueness by showing that there is

a unique p∗ where all first order conditions hold given correct anticipation. In the

CSM where all match values have a continuous density distribution over the reals,

∂ ln πi
∂pi

∣∣∣∣
p=p̂

=
1

pi − ci
+

1

1 + bi

∂ lnDA
i

∂pi

Consider a hypothetical, simultaneous pricing game where the payoff of each firm

i is ui = (1 + bi) ln(pi − ci) + lnDA
i . Quint shows that general pricing properties

hold in this game if match values have log-concave densities that are not bounded

above. We assume that f0 and each fεi are log-concave densities with a support that

is not bounded above and a continuous density that is well-defined over the reals so

the sufficient conditions hold for general pricing properties in this static game. While

Quint assumes integer values for bi, all of the proofs hold for any bi ≥ 0. From Quint,

we know there is a unique vector of prices p∗ for which

1 + bi
p∗i − ci

+
∂ lnDA

i (p∗)

∂pi
= 0 ∀i.

Since
1 + bi
p∗i − ci

+
∂ lnDA

i (p∗)

∂pi
= 0⇔ 1

pi − ci
+

1

1 + bi

∂ lnDA
i

∂pi
= 0,

the unique equilibrium in the static game is also an equilibrium in the hidden price

game. The unique equilibrium in the static game where payoffs are log-concave implies

that any other price vector has at-least one firm i for which

1 + bi
p∗i − ci

+
∂ lnDA

i (p∗)

∂pi
6= 0.

As such, no other price vectors can be an equilibrium in the hidden price game.

Quint shows that general pricing properties hold in the static game, so general pricing

properties hold in the hidden price game which shares equilibrium prices.

Proposition 11 Suppose A1 and A2 hold. The general pricing properties hold. Rel-

ative to advertised prices, all mark-ups are higher with hidden prices and all mean

effective values are lower with hidden prices.
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Proof. The argument for general pricing properties is provided above. Since prices

are strategic complements in the corresponding static game,

1

pi − ci
+

1

1 + bi

∂ lnDA
i

∂pi
≥ 1

pi − ci
+
∂ lnDA

i

∂pi

implies that prices are higher with hidden prices than with advertised prices.

While these results are similar to the advertised pricing game with an additional

condition on either bi or the distribution of match values, we can also provide new

insights by comparing the net-quality indexed model with hidden prices to the same

model with advertised prices. While similar patterns hold relative to socially optimal

pricing (pi = ci), the earlier comparisons are more pronounced due to increased mark-

ups. Recall that the NQI search property compares search patterns with equilibrium

prices to search with socially optimal pricing. The following properties provide a

similar comparison where search patterns with hidden prices are compared to search

patterns with advertised prices.

Property 4 (NQI Comparison Properties) For any two products i < j, the mean

difference of effective values E[ωi−ωj] with hidden prices is weakly less than the mean

difference of effective values E[ωi − ωj] with advertised prices. As a result, the dis-

tribution of search orders is more compressed with hidden prices than with advertised

prices.

In a symmetric uncovered market, higher markups imply that the mean search

volume is lower with hidden prices than with advertised prices. By contrast, in a

covered market with asymmetric net qualities, the mean search volume with hidden

prices is higher than with advertised prices.

We now consider the NQI CSM with the added assumption that b ≥ 1 or fε
1−Fε to

establish the earlier properties and the new NQI comparison properties.

Proposition 12 Suppose the net quality indexed CSM with hidden prices where A1

and A2 hold. The General Pricing Properties hold, the NQI Pricing Properties hold,

the NQI Search Properties hold, and the NQI Comparison Properties hold.

Proof. Once again, consider the equivalent static game equilibrium in which general

pricing properties hold. Since general pricing properties hold, the arguments for NQI
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pricing properties hold. Since NQI pricing properties hold, the arguments for NQI

search properties hold. We need only prove that NQI Comparison Properties. This

part of the proof is in the appendix.

The results so far point to similarities across pricing in all three models. In

particular, this index result shows that all previous comparisons hold where past

comparisons are amplified with hidden prices.

We now establish new intuition by considering changes to the underlying compo-

sition of effective values in the CSM with hidden prices.

Property 5 All equilibrium prices are increasing if a single firm’s composition shifts

toward higher search costs.

As the composition parameter bi becomes sufficiently large, the equilibrium price

of i limits to∞, the equilibrium profit for i limits to 0 and all other prices limit to the

hidden price equilibrium with product i is removed. By adjusting the composition of

all products, prices can be made arbitrarily large, demands profits and search volumes

can be made arbitrarily small for all products. Notice that a composition shift toward

higher search costs for firm i (bi increases and Fωi does not change) implies that DA
i

is constant and

∂ ln πi
∂pi

∣∣∣∣
p=pa

=
1

pi − ci
+

1

1 + bi

∂ lnDA
i

∂pi

increases. Since there is a unique equilibrium for all relevant parameters values, the

upward pricing pressure for firm i propagates through to higher equilibrium prices

for all products. The following proposition builds on this logic to establish the role

of the effective value composition in markets with hidden prices.

Proposition 13 Suppose A1 and A2 hold. Also suppose that
fεi

1−Fεi
is log-concave for

each product.20

In the hidden pricing game, the composition properties hold. Moreover, if an

unique total industry profit maximizing price vector exists, there is a unique vector

20We assume that each
fεi

1−Fεi
is log-concave to avoid discussing cases where a composition shift

results in bi < 1. These results still hold for comparing compositions where bi ≥ 1 without assuming
fεi

1−Fεi
.
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of search cost composition parameters for which equilibrium hidden prices maximize

total industry profits.

Proof. As the composition of a product shifts toward higher prices, the sensitivity

of demand to the price of i decreases and the sensitivity of demand to the anticipated

price of i increases. In the limit as bi approaches ∞, 1
1+bi

limits to 0. Thus, the

sensitivity of demand limits to 0 and the equilibrium price for i limits to ∞. Due to

the underlying properties of discrete choice models, the limit of DA
j as pi approaches

infinity is just the demand for j with product i removed. Thus, the equilibrium prices

of other firms limit to the hidden price equilibrium with i removed. If all compositions

limit to these extremely high relative search costs, all prices become large and the

market collapses.

Now suppose there exists a unique vector of prices pTIP for which total industry

profits (
∑

i πi) are maximized. Preserving the advertised effective values, if we set

the composition parameters such that

bi = −(pTIPi − ci)
∂ lnDA

i (pTIP )

∂pi
− 1 ∀i

then

∂ ln πi(p
TIP )

∂pi

∣∣∣∣
p̂=pTIP

=
1

pTIPi − ci
+

1

1 + bi

∂ lnDA
i (pTIP )

∂pi
=

1

pTIPi − ci
− 1

pTIPi − ci
= 0 ∀i.

For these composition parameters (and only these parameters), the hidden price equi-

librium also maximizes total industry profits.

While these results are general, we can apply the composition properties to analyze

the composition index CSM with hidden prices.

Property 6 With hidden prices, equilibrium mark-ups are increasing in the index

and mean effective values, demands and search volumes are decreasing in the index.

The modal search order is the index order (up to ties in composition) where the

modal order is more likely to occur than with advertised or socially optimal prices.

Moreover, for any two products i < j, the mean difference of effective values E[ωi−ωj]
with hidden prices is weakly greater than with either advertised prices or socially

optimal pricing. In a covered market, this implies that there is less search with hidden

prices than is socially optimal.
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Proposition 14 Suppose the composition index CSM where A1 and A2 hold. The

general pricing properties hold, composition properties hold and the composition index

properties hold.

Proof. For any products i and j where i > j we can consider an increasing in the

search cost composition of i until i and j have the same composition. In Theorem 3,

Quint proves that a composition shift toward higher search costs raises all prices where

pi − pj is also increasing. Thus, product i had a lower price before the composition

shift.

As with the net quality index, the modal search order follows the index and

demands, search volumes and mean effective values are all decreasing in the index.

However, mark-ups follow the opposite pattern with higher mark-ups corresponding

to firms that are searched later in the process and are higher in the index. Mark-up

going against the index implies that there is an amplification of mean effective value

differences relative to the socially optimal or advertised differences.

This index property resembles the results from models that study firm prominence.

In these papers, prominent firms (which are always searched first) offer a lower price.

There is a self fulfilling prophesy in these models where there are many equilibrium in

which different firms are prominent and also offer a price to justify this prominence.

While the composition index result is similar, as with all of our previous results, there

is a unique price equilibrium.

A final and important point needs to be made before moving on. Among the set

of possible equilibria, the demand functions, firm profits and consumer payoffs are

symmetric. The only asymmetries are in search volumes and in the hypothetical (and

never realized) deviations from an equilibrium. Composition difference can explain

pricing in asymmetric models where demands, quality and unit costs are symmetric,

but prices are not.

While all of the results thus-far are general, we now consider a specific family of

match value distributions to provide some additional results.
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5 Robustness: Search Cost Correlations and Ob-

servable Match Value Heterogeneity

In this section, we establish results for the REV with positively correlated search costs

and then with negatively correlated search costs. After that, we discuss the robustness

of all of our earlier results in an adapted CSM with an additional competent of match

value heterogeneity that is observed prior to search.

5.1 Positively Correlated Search Costs

First we consider positively correlated search cost heterogeneity by allowing for con-

sumer types with higher or lower search cost parameters for all products. There are

many reasons search costs maybe correlated across products. For online markets,

consumers likely have different internet speeds, devices and peripherals that make

search relatively easier or harder for a given consumer across all products. In physi-

cal markets, access to better personal transportation or possibly an enjoyment from

shopping could leave to higher or lower search costs.

To model this, we consider an REV model where Ai = A and bi = b for all

products. Additionally, we suppose that prior to consumer search, nature draws a

search cost parameter b ∼ Fb which is known to consumer search, but is not observed

by the firm prior to pricing. The distribution of b is common knowledge. In this

model, the overall level of search costs can vary across realized consumers. Notice

that we are defining consumer types where conditional on the realized type (value

of b), search costs are independent. Unconditional on type, the realized search cost

for one product is positively correlated with the realized search costs for another

product.21

Proposition 15 In an uncovered market with advertised prices, if ln(1 + b) has a

log concave density, then the general price properties hold, the NQI pricing properties

hold and the NQI search properties hold. In a covered market with advertised prices,

the general price properties hold, the NQI pricing properties hold, the NQI search

properties hold, and equilibrium prices are the same for any Fb.

21This parallels the logic underpinning BLP where TIEV is the choice model conditional on type.
Correlations in match values come only from the distribution of possible types.

32



Proof. In the advertised REV, mean effective values for products are xi− 1
A

ln(1+ b)

conditional on the realized value of b. As is true in discrete choice models with match

values, increasing the mean of all effective values by some amount z has the same

effect on advertised demand as decreasing the mean of the outside option value by z.

In a covered market, this shift has no effect on advertised demands since all effective

values change by the same amount and there is no outside option. For advertised

price in an uncovered market, the game behaves like a 0 search cost game (b = 0)

where we adjust the outside option value to be v0 + 1
A

ln(1 + b). The sum of two

random variable with log-concave densities is log-concave so all the requirements for

general pricing properties and NQI properties hold. Thus, we can apply our earlier

results for advertised prices to this game. In the covered market, the requirement

that ln(1 + bi) is not necessary since advertised demands are constant in b so the 0

search cost equilibrium is also an equilibrium for any Fb.

While the equilibrium in a covered market with advertised prices does not depend

on the distribution of b values, the hidden price equilibrium does. While DA
i is

constant in b in covered markets, 1
1+b

is not.

Proposition 16 In a covered market with hidden prices, the general price proper-

ties hold, the NQI pricing properties hold, and NQI search properties hold, and the

NQI comparison properties hold. Moreover, equilibrium prices are the same as in a

corresponding REV with a constant b parameter b̂ where 1

1+b̂
= E[ 1

1+b
] .

Proof. For hidden prices and a covered market, the distribution of b is relevant for

a firm’s pricing incentive only though the multiplicative constant 1
1+b

. Since DA
i is

constant in b,

∂Di

∂pi

∣∣∣∣−→p =
−→
pa

= Eb

[
1

1 + bi

∂DA
i

∂pi

]
= Eb

[
1

1 + bi

]
∂DA

i

∂pi

Thus, we can consider an equivalent static game where firm profits are (pi −
ci)

1+b̂DA
i to get all of the properties.

This section demonstrates two things. First, our combination of Quint and CSM

can be adapted to solve a model with positively correlated search costs. Second, the

CSM was be used as a conditional model where search costs and match values are

conditionally independent. Now we consider a stylized CSM to solve for prices with

negatively correlated search costs.
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5.2 Negatively Correlated Search Costs

In many markets, search costs maybe negatively correlated. This may be due to dif-

ference in consumer locations where being closer to one product implies the consumer

is farther from another. This may be due to asymmetries in access to information

where a consumer has prior experiences with one firm and not others (i.e. current cell

phone carrier versus other carriers). Online, this maybe due to passive information

gathering where consumers tend to use one website more than another and are thus

able to access information on one website easier than the other. To model negatively

correlated search costs, we once again consider consumer types.

Suppose there are two firms in a covered market where demands arise from the

REV with Ai = A, ci = c and qi = q for both firms. In this model where b1 and b2

are parameters,

Di = 1− eA(pi−q) + bie
A(p̂i−q)

eA(pi−q) + bieA(p̂i−q) + eA(pj−q) + bieA(p̂j−q)
=

eApj + bje
Ap̂j

eApi + bieAp̂i + eApj + bjeAp̂j

Now suppose consumers have a type z ∈ [0, 1] drawn by nature prior to the CSM

being realized where E[z] = .5. Given z, b1 = b+ z(b− b) and b2 = b− z(b− b) where

0 ≤ b ≤ b. Notice that b1 is increasing in z, b2 is decreasing in z and b1 + b2 = b + b

for any possible value of z.

Proposition 17 In this game with hidden prices, there exists a unique symmetric

equilibrium where p∗1 = p∗2 = c + 2+b+b
A

. The equilibrium price is strictly decreasing

in A and strictly increasing in c, b and b. Firm equilibrium profits are b+b
A

which are

strictly decreasing in A and strictly increasing in b and b.

Proof: Suppose p̂1 = p̂2 = p̂. It follows that

D1 = Ez[D1|z] = Ez

[
eAp2 + (b− z(b− b))eAp̂

eAp1 + eAp2 + (b+ b)eAp̂

]
so D1 =

eAp2+ 1
2

(b+b)eAp̂

eAp1+eAp2+(b+b)eAp̂
. By similar logic, D2 =

eAp1+ 1
2

(b+b)eAp̂

eAp1+eAp2+(b+b)eAp̂
.

Now consider the profit of firm i.

∂ ln πi
∂pi

∣∣∣∣
pi=p̂i=p̂j=pj=p

=
1

p− c
− A

2 + b+ b
.
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Thus, p∗1 = p∗2 = c+ 2+b+b
A

is the unique symmetric equilibrium in this game.

We include this model as a robustness exercise, but ...

5.3 Observable Match Value Heterogeneity

As in the past two sections, we once again consider consumer types where the CSM

represents the consumer’s actions conditional on the realized type. In this section, we

look at additive match value heterogeneity that is observable to the consumer prior

to search and is not observed by the firms. One method for modeling this concept is

to redefine the search model so that match values are

vi = q − pi + αi + εi

where αi ∼ i.i.d.Fαi . While this may at first appear to be a distinctly new problem,

we can consider qi + αi to be the consumer’s personal pre-search quality for firm i

where qi is the average quality assuming E[αi = 0]. As long as the distributions of

search costs and match values are defined with the CSM, the model has all of the

properties of the CSM conditional of αi ∀i.

Proposition 18 All earlier general proposition results hold with the same conditions

and the added assumption that each fαi is a log-concave function over its support. All

earlier index results hold with the added assumption that that fαi = fα where fα is a

log-concave function over its support.

Assuming Fεi has a support over the reals, ∂Di
∂pi

= 1
1+bi

∂Di
∂pi

. Moreover, the sum

of two independent random variables with log-concave densities where one of these

densities has a support over the reals is a random variable with a log-concave density

over the reals. Thus, all of our advertised and hidden general results still hold with

the earlier sufficient conditions and the new assumptions on each αi. Since the general

results all hold, index results hold with the the symmetry assumption for each fαi .

Unlike in other papers like Choi, the inclusion of this type of heterogeneity generalizes

our model, but is not necessary for our earlier existence and uniqueness proofs.

5.4 Alternative Conjugate Model

There are two existing methods for structuring search costs in an ordered search

model with search cost heterogeneity. Our method, which is introduced in this paper,
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selects the search cost distributions so that the survival function of match values,

scores and effective values for a given product are the same up to a power. As noted

earlier, the CSM is defined with match value and search cost distributions where

Fsi(z) = Gεi(γ
−1
i (z))bi ∀i. (9)

for some power bi. Search costs levels with our method are determined bi. This

approach can have any match value distribution with a finite mean and behaves well

with small deviations from correct anticipation prices. We can consider our method

to use a geometric conjugate where match value, scores and effective values all of the

same survival function raised to different powers with correct anticipation .

An alternative approach selects the search cost distributions so that effective val-

ues have the same distribution as match values with a negative shift in the mean.

We refer to this as a shift conjugate since match values and effective values have the

same cdf with a different mean. Suppose that

Fsi(z) =
Gεi(γ

−1
i (z) + ai)

Gεi(γ
−1
i (z))

. (10)

for ai > 0.

This method was introduced in (JLMG et al.) with T1EV match values. The shift

conjugate can be implemented for any distribution of match values with a log-concave

density over the reals where the negative mean shift on effective values determines

the level of search costs. Unlike with the method used throughout this paper, if a

match value distribution is log-convex, then
Gεi (γ

−1
i (z)+ai)

Gεi (γ
−1
i (z))

is decreasing in z so the

shift conjugate does not exist. Importantly, the REV model is consistent with either

method. Some of our earlier results for advertised prices also apply to the shift

conjugate model.

Proposition 19 Suppose an ordered search pricing game with advertised prices where

f0 and each fεi are log-concave functions that are unbounded above. Also suppose that

for each option i, Fsi(z) =
Gεi (γ

−1
i (z)+ai)

Gεi (γ
−1
i (z))

where ai > 0. The general pricing results

hold.

Additionally, if ai = a and Fεi = Fε for each option i, the NQI pricing results

hold and the search order compression part of NQI search results hold.
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While we find the geometric conjugate more useful for solving search with hidden

prices, the shift conjugate maybe more useful for empirical work and games with

advertised prices, since search costs behave like negative quality shifts. We believe

both of the models are useful tool moving forward as a literature with the REV model

as the ideal combination of these two???.

6 Conclusion

1) We introduce the conjugate search cost assumption to deliver a tractable set of

ordered search models

2) We show that classic discrete choice markets (with i.i.d. match distributions)

entail a positive relation between firm mark-ups and their equilibrium sales (and hence

profits); this also holds in search markets with both advertised and hidden prices.

3) We provide new results for search patterns in the markets and by analyzing

composition effects.
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7 Appendix

Proofs not included in the body of the paper

Statement in the text: Both T1EV and reverse T1EV match value distributions

have the property that
fεi
Gεi

is log-concave.

Let H(z) = e−e
−z

. Any reverse T1EV has a cdf Fεi(z) = 1−H(Ai(−z + Bi)) for

some Ai > 0 and Bi ∈ R. Since Ai(−z + Bi) is linear in z and h(−z)
H(−z) = ez,

fεi
Gεi

is

log-concave (and log-linear).

Any T1EV has a cdf Fεi(z) = H(Ai(z − Bi)) for some Ai > 0 and Bi ∈ R. Since

Ai(−z +Bi) is linear in z, we only need to show that h(z)
1−H(z)

is log-concave.

ln(
h(z)

1−H(z)
) = ln(

e−e
−z−z

1− e−e−z
) = ln(

e−z

ee−z − 1
) = −z − ln(ee

−z − 1)

∂ ln( h(z)
1−H(z)

)

∂z
= −1 +

ee
−z−z

ee−z − 1

∂2 ln( h(z)
1−H(z)

)

(∂z)2
=

ee
−z−z

(ee−z − 1)2

(
1 + e−z − ee−z

)
Now consider 1 + e−z − ee−z . Substitute v = e−z so v > 0. 1 + v − ev is 0 at 0

and decreasing in v, so 1 + v − ev < 0 ∀v > 0 and 1 + e−z − ee−z < 0 ∀z ∈ R. Thus,
∂2 ln(

h(z)
1−H(z)

)

(∂z)2
< 0.

Proposition 3

Suppose a CSM where f0 and each fvi and fv̄i are strictly positive over a shared,

measurable set (A1 is sufficient). Any ordering of realized conditional values and

scores occurs with positive probability. Thus, any consideration set combined with

a selection from the set and order of searching the set have a positive probability of

occurring.

With correct anticipation, A1, and A2, the following are all log-concave in x since

each component of the integrand are log-concave, and log-concavity is preserved over

multiplication and integration.

SVi =

∫ ∞
−∞

Π
j 6=i
Fωj(z − xj)fri(z − xi)dz.
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P[Î , i] =

∫ ∞
−∞

Π
j∈Î\{i}

Fεj(z − xj)Grj(z − xj)) Π
j /∈Î
Frj(z − xj)fωi(z − xi)dv.

The probability i is first in the search order:∫ ∞
−∞

Π
j 6=i
Frj(z − xj)fri(z − xi)dz.

The probability i is last in the search order is:∫ ∞
−∞

Π
j 6=i
Grj(z − xj)fri(z − xi)dz.

Suppose a covered market CSM where Fεi = Fε and bi = b for each product i. Let x′

and x′′ be two possible vectors of mean values where |x′i − x′j| ≥ |x′′i − x′′j | ∀i, j. Let

xi(z) = (1− z)x′i + zx′′i . Let ∆ij(z) = xi−xj which is decreasing in z for j > i. Then

SVi =

∫ ∞
−∞

Π
j 6=i
Fω(v − xj)fr(v − xi)dv,

and by a change of variables where v′ = v − xi,

SVi =

∫ ∞
−∞

Π
j 6=i
Fω(v′ + xi − xj)fr(v′)dv′

=

∫ ∞
−∞

Π
j 6=i
Fω(v′ + ∆ij)fr(v

′)dv′

Notice that z increasing shifts xi(z) closer to x′′i . Furthermore

∂SVi
∂z

=
∑
j 6=i

∂∆ij

∂z

∫ ∞
−∞

Π
k 6=i,j

Fω(v′ + ∆ik)fω(v′ + ∆ij)fr(v
′)dv′;

undoing the change in variables, we get

∂SVi
∂z

=
∑
j 6=i

∂∆ij

∂z

∫ ∞
−∞

Π
k 6=i,j

Fω(v − xk)fω(v − xj)fr(v − xi)dv.

Now consider SV =
∑n

i=1 SVi. By the above work,

∂SV

∂z
=

n∑
i=1

n∑
j=1

∂∆ij

∂z

∫ ∞
−∞

Π
k 6=i,j

Fω(v − xk)fω(v − xj)fr(v − xi)dv
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where ∆ii is 0.

Any pair of firms i and j occurs twice in the double sum as (i, j) and (j, i). WLOG,

suppose i < j so xi ≥ xj and ∆′ij(z) = −∆′ji(z) < 0.

∂∆ij

∂z

∫ ∞
−∞

Π
k 6=i,j

Fω(v−xk)fω(v−xj)fr(v−xi)dv+
∂∆ji

∂z

∫ ∞
−∞

Π
k 6=i,j

Fω(v−xk)fω(v−xi)fr(v−xj)dv

=
∂∆ji

∂z

∫ ∞
−∞

Π
k 6=i,j

Fω(v − xk)(fω(v − xi)fr(v − xj)− fω(v − xj)fr(v − xi))dv

Now we just need to show f ∗(v− xi)f̄(v− xj)− f ∗(v− xi)f̄(v− xj) ≥ 0 to prove

that ∂SVi
∂z
≥ 0. With the CSM (index setup), f ∗(z) = (1 + b)f ε(z)(1 − F ε(z))b and

f̄(z) = bf ε(z)(1− F ε(z))b−1. Thus,

f ∗(v − xi)f̄(v − xj)− f ∗(v − xi)f̄(v − xj)

= (1 + b)f ε(v − xi)(1− F ε(v − xi))bbf ε(v − xj)(1− F ε(v − xj))b−1

−(1 + b)f ε(v − xj)(1− F ε(v − xj))bbf ε(v − xi)(1− F ε(v − xi))b−1

Grouping the similar parts, we get

f ∗(v − xi)f̄(v − xj)− f ∗(v − xi)f̄(v − xj)

= (1+b)f ε(v−xi)(1−F ε(v−xi))b−1bf ε(v−xj)(1−F ε(v−xj))b−1(1−F ε(v−xi)−1+F ε(v−xj))

Since xj < xi, F
ε(v−xj) > F ε(v−xi). Thus, f ∗(v−xi)f̄(v−xj)−f ∗(v−xi)f̄(v−

xj) ≥ 0 so ∂SV
∂z

> 0. Evaluating SV at z = 0 and z = 1, we get that SV is higher

with x′′ than with x′.

Lemma 1

Di =

∫ ∞
−∞

Π
j 6=i

(1− e−e
v−zj

)e−e
v−zi+v−zidv

=

∫ ∞
−∞

∑
θ∈P−i

(−1)|θ|(e
−ev(

∑
j∈θ

e−zj )

)e−e
v−zi+v−zidv

=
∑
θ∈P−i

(−1)|θ|
∫ ∞
−∞

(e
−ev(

∑
j∈θ

e−zj+e−zi )

)e−e
v+v−zidv
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=
∑
θ∈P−i

(−1)|θ|
e−zi

e−zi +
∑
j∈θ
e−zj

SVi =

∫ ∞
−∞

Π
j 6=i

(1− e−e
v−zj

)e−e
v−yi+v−yidv

=

∫ ∞
−∞

∑
θ∈P−i

(−1)|θ|(e
−ev(

∑
j∈θ

e−zj )

)e−e
v−yi+v−yidv

=
∑
θ∈P−i

(−1)|θ|
∫ ∞
−∞

(e
−ev(

∑
j∈θ

e−zj+e−yi )

)e−e
v+v−yidv

=
∑
θ∈P−i

(−1)|θ|
e−yi

e−yi +
∑
j∈θ
e−zj

To better understand the expression of P[Î , i], we rely on the earlier results for

optimal search.

P[Î , i] =

∫ ∞
−∞

Π
j∈Î\{i}

Fεj(z − xj)Grj(z − xj)) Π
j /∈Î
Frj(z − xj)fωi(z − xi)dv

=

∫ ∞
−∞

Π
j∈Î−{i}

(
(1− e−e

v−xj
)(e−e

v−yj
)
)

Π
j /∈Î

(1− e−e
v−yj

)e−e
v−zi+v−zidv

=

∫ ∞
−∞

Π
j∈Î−{i}

(1− e−e
v−xj

) Π
j /∈Î

(1− e−e
v−yj

) Π
j∈Î−{i}

(e−e
v−yj

)e−e
v−zi+v−zidv

=

∫ ∞
−∞

Π
j∈Î−{i}

(1− e−e
v−xj

) Π
j /∈Î

(1− e−e
v−yj

)e
−ev(e−zi+

∑
j∈Î

e−yj )+v−zi
dv

=

∫ ∞
−∞

∑
θ∈P−i

(−1)|θ|e
−ev(e−zi+

∑
j∈Î

e−yj+
∑

j∈(θ−Is)
e−yj+

∑
j∈(θ∩Î)

e−xj )+v−zi
dv

=
∑
θ∈P−i

(−1)|θ|
∫ ∞
−∞

e
−ev(e−zi+

∑
j∈(θ∪Î)

e−yj+
∑

j∈(θ∩Î)
e−xj )+v−zi

dv

∑
θ∈P−i

(−1)|θ|
e−zi

e−zi +
∑

j∈(θ∪Î)
e−yj +

∑
j∈(θ∩Î)

e−xj

Proposition 12: Once again, consider the equivalent static game equilibrium.

Since general pricing properties hold, the arguments for NQI pricing properties hold.
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Since NQI pricing properties hold, NQI search properties hold. We now prove the

NQI Comparison Properties

Indexed Model: We want to show

|xSOi − xSOj | ≥ |xAi − xAj | ≥ |xHi − xHj | ∀i, j

WLOG, assume i < j so xSOi ≥ xSOj , xAi ≥ xAj and xHi ≥ xHj . We know firm i has

a higher markup under advertised prices (pAi − ci > paj − cj) so

|xSOi − xSOj | = qi − ci − qj + cj ≥ qi − pAi − qj + pAj = |xAi − xAj |

However, |xAi − xAj | ≥ |xHi − xHj | does not follow directly from this mark-up

argument. To show this inequality, we consider a related question first.

Suppose xSOi = xAi = xHi = xi where qSOi − cSOi , qAi − cAi , qHi − cHi denote the

underlying net quality vectors that rationalize these x values for the three different

models.

For the social optimum,

qSOi − cSOi = xi,

while for advertised prices,

−1

qAi − cAi − xi
+
∂ lnDA

i (x)

∂xi
= 0

⇔

qAi − cAi = xi + (
∂ lnDA

i (x)

∂xi
)−1.

For hidden prices,

−1

qHi − cHi − xi
+

1

1 + b

∂ lnDA
i (x)

∂xi
= 0

⇔

qHi − cHi = xi + (1 + b)(
∂ lnDA

i (x)

∂xi
)−1.

Notice, if we ignore the underlying relationship between DA
i and b, b = −1 corre-

sponds to socially optimal prices, b = 0 to advertised prices and b > 0 to the hidden

price model. Since |xSOi − xSOj | ≥ |xAi − xAj | for the common q − c comparison,

qSOi − cSOi − qSOj + cSOj ≤ qAi − cAi − qAj + cAj .
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It follows that (∂ lnDA(x)
∂xi

)−1 ≥ (∂ lnDA(x)
∂xj

)−1. By extension,

qAi − cAi − qAj + cAj ≤ qHi − cHi − qHj + cHj .

This holds for any possible equilibrium vector x. From Quint (2014), we know

that xi − xj is increasing in q̄i with both hidden and advertised prices. Since the

equilibrium is unique, if q̄i = q̄j, then xi = xj with hidden or advertised pricing. Now

consider a vector of net qualities for firms. Let gA(q̄) = xAi − xAj be the hypothetical

difference in mean values for i < j when q̄i is adjusted to equal q̄, all other net

qualities are held constant, and prices are advertised. Let gH(q̄i) = xHi − xHj be the

hypothetical difference in mean values for i < j when q̄i is adjusted to equal q̄, all other

net qualities are held constant, and prices are hidden. Both functions are continuous,

increasing and invertible where gA(q̄j) = gH(q̄j) = 0 and g−1
H (z) ≥ g−1

A (z) ∀z ≥ q̄j.

Thus, gA(q̄i) ≥ gH(q̄i). It follows that the difference in equilibrium mean effective

values is lower with hidden prices than with advertised.
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