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1 Introduction

We present a finite-horizon, multiperiod model of a market for durable
goods1 (like cars) whose owners have private information about the good’s qual-
ity. A good’s quality changes stochastically over time in a way that need not be
stationary. Equilibrium is characterized not only by prices and quantities, but
also by the quality distributions of the different classes of the goods for sale.
We use a fixed-point method to prove the existence of equilibrium.

2 Literature Review

The vast economic literature on markets with asymmetric information dates
back to Akerlof (1970), which showed that, in a durable goods market, asym-
metric information acts as an impediment to trade and even may have the
potential to eliminate trade entirely. Akerlof’s example was the used car mar-
ket, but it was soon recognized that asymmetric information can play a critical
role in many other contexts, including labor markets (Spence, 1973), insurance
markets (Rothschild and Stiglitz, 1976) and credit markets (Stiglitz and Weiss,
1981). The role of asymmetric information in markets for financial assets has
been a focus since the financial crisis of 2008. See, for example, Tirole (2012)
and Guerrieri and Shimer (2014).
Akerlof formulated his original lemons model in a static framework. Hendel

and Lizzeri (1999) extended the study of adverse selection in markets for durable
goods to a dynamic model. Unlike our model, published work on dynamic
analysis of durable goods with private information has typically used either a 2-
period model or has focused on stationary equilibrium in models with infinitely
many periods.
In some ways, the overall motivation for our work, to provide a tractable

framework for empirical analysis, is most similar to that of Gillingham et al.
(2019). A key difference is that sellers’ private information is central to our

1Although, with minor modifications, the model can be applied to other durables (like
housing), we use cars as our example below.
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analysis, while their model assumes symmetrically informed buyers and sellers,
following in the tradition of Rust (1985) and Berkovec (1985).

3 Model

There is a continuum H of consumers or households (we use the terms
interchangeably), indexed by h. Each is one of a finite number of types, with
consumers of the same type having the same observable characteristics. Con-
sumers’types are indexed by i ∈ I, where I is a finite set.

Time is discrete, and the horizon is finite: time periods are indexed by
t ∈ T where T = {0, 1, 2, . . . , T}. Consumers have a common discount factor
β ∈ (0, 1).2 In each period, each consumer owns at most one car.
There is a continuum K of cars, indexed by k. Each is in one of a finite

number of classes, with cars in the same class having the same publicly ob-
servable characteristics (such as year of manufacture and brand). Cars do not
change their class as time elapses. Car classes are indexed by j ∈ J , where J is
a finite set not including 0 or −1 that represents all car classes that are ever
available at any time from 0 through T . We use the additional index j = 0 to
denote the consumer’s outside option of owning no car, and (with a slight abuse
of terminology) we treat 0 as though it denotes a class of cars: Thus, saying
that the consumer chooses a car of class 0 means that the consumer chooses to
own no car. Let Jt denote the set of all classes of cars supplied in period t.
Then Jt = Jt ∪ {0} represents the set consisting of all car classes available for
purchase in period t as well as the outside option. Later, we also use the index
−1 to indicate the choice of retaining one’s car.
There are four additive components that comprise the utility flow uhkt that

accrues in period t to a consumer h of type i from owning car k in class j.
a) vijt is deterministic and known to all consumers.
b) qkt is the car quality3 (or lemons) term, whose value is known only to the

current owner of car k. The probability distribution of qkt for all cars in class
j for sale in period t is endogenous because it depends on the decisions of car-
owners and is denoted by Gjt. Although these distributions are endogenous, our
assumptions (about the initial quality distributions and about the conditional
distributions that describe how quality changes stochastically from period to
period) ensure that there is a compact interval Q that contains the support of
all these distributions.
c) εhjt represents the idiosyncratic component of the value of the match be-

tween consumer h and a car of class j in period t. The current vector (εhjt)j∈Jt
is known to consumer h, and the εhjt are independently drawn from a continuous
distribution F εij whose support is the real line. We assume that match values
vary by individual consumer h (rather than being the same for all consumers of

2At the cost of more complicated notation, we could readily generalize to allow different
types of consumers to have different discount factors.

3Although we use "quality" to refer to the qkt term, it is really the privately observed
component of quality. Other components of uhkt (such as vijt) also reflect quality.
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any given type i); otherwise demand would not be continuous. The match values
vary by period t and are assumed to be independent across time periods in order
to provide suffi cient motivation to trade. The full-support assumption ensures
a positive quantity demanded and a positive quantity supplied or scrapped at
any price, and hence a positive volume of trade in every class of cars in every
period that the class is available. We assume that the F εij distributions each
have a finite mean, which, without further loss of generality, we normalize to
zero by adjusting the vijt terms.
d) ξk is a car-specific term whose value is common knowledge to buyers and

sellers but is not observed by the econometrician. Its presence explains why some
cars are scrapped while others, indistinguishable by the econometrician, are sold
at various positive prices. If, for each car k, the support of the distribution of
ξk is finite, then including the ξk terms raises no additional theoretical issues
regarding the question of whether equilibrium exists. Consumers regard cars
with different values of ξk as being in different classes, but the econometrician
observes only aggregates that lump together cars that are distinct from the
consumers’point of view.4 We make this finite-support assumption, and hence
lose no further generality by omitting the ξk and writing

uhkt = vijt + qkt + εhjt.

For the outside option (j = 0), we assume that vi0t = 0 for all i and t, and
quality qkt is always zero, so uh0t = εh0t.
We allow for possible costs of disposing of a car, either by choosing to scrap

it or sell it.5 The cost of scrapping a car in class j is γj ∈ R. We do not restrict
γj to be positive, so as to allow the possibility that scrapping may yield parts
which are worth more than the cost of disassembly.
The seller of a car in class j incurs a nonnegative transactions cost so that,

if the price is p, the net amount the seller receives is νj(p) ≤ p.6 We assume
that, for each j ∈ J , νj is strictly increasing (a higher price nets more for the
seller), continuous, and unbounded above (so νj(p)→∞ as p→∞).
The terminal value V̄ijT+1(q) gives the value to type i of ending the final

period T owning a car in class j of quality q. We assume that the functions
V̄ijT+1 are continuous and nondecreasing.
In each period t, a fraction δjt ∈ [0, 1] of the cars in each class j surviv-

ing from period t − 1 are exogenously scrapped and this probability of scrap-

4 If the ξk terms can vary over time as well as with car class, as long as the entire se-
quence of ξkt is known from the start, we can use the same argument. If the sequence is
not known in advance, thinking of distinct levels of ξkt as corresponding to different classes
would require us to extend our model so that a car’s class is no longer fixed, but can instead
change from period to period. The simplest way to model the probabilities of switching
from one class to another is to make them exogenously given constants unaffected by qkt.

5The equilibrium existence result applies whether such costs are zero or strictly positive.
With zero transactions costs, idiosyncratic taste shocks give consumers a strong incentive
to sell their cars and buy different ones. Nevertheless, information asymmetries lead some
consumers, in some periods, to keep their current vehicles.

6At the cost of further notational clutter, the scrapping and transactions costs could
readily also be allowed to vary according to seller type.
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ping is assumed to be the same for all cars in class j.7 Car quality evolves
stochastically from period to period. A surviving car of class j that was of
quality qkt−1 = q′ in period t − 1, now (in period t) has quality qkt = q dis-
tributed with conditional density zjt(q, q′), and we assume that zjt is a contin-
uous function. The associated conditional distribution function of q given q′

is Zjt(q, q′) =

∫
x≤q

zjt(x, q′)dx. We assume that these conditional distributions

each have compact support. We also assume that an increase in previous quality
either leaves the distribution of current quality unchanged or else increases it
in the sense of first-order stochastic dominance: Formally, for any q, if q′′ > q′,
then Zjt(q, q′′) ≤ Zjt(q, q′).
In addition to used cars supplied by their owners, we allow for external

suppliers, who supply new cars and can also supply used cars imported from
outside the model. Altogether, these external sources supply a quantity Sexjt of
cars of class j. We assume that each Sexjt is a continuous function of the price
vector (pjt)j∈Jt,t∈T . Let F

ex
jt denote the given initial distribution of quality,

qkt, for these externally supplied cars.
Each owner decides whether to keep her car or to dispose of it (i.e., to sell

or scrap it). Nonowners, including those who just decided to dispose of their
car, each decide whether to buy, and, if so, from which class. Nonowners have
beliefs8 about the quality of cars for sale in each class j that, in equilibrium,
coincide with the actual probability distributions Gjt. These distributions Gjt
are endogenous because they depend on owners’decisions about disposing of
their cars.
The market clears, trade (and, if chosen, scrapping) occurs, and sellers incur

transactions costs. For each class j ∈ Jt and each type of buyer i, the massMijt

of the set of consumers of type i who own cars in class j changes endogenously
over time, as do the distributions Fijt of qkt, the quality terms of the cars these
consumers own. The initial masses and distributions, i.e. Mij0 and Fij0, are
given.
We assume that the quality distributions of externally supplied cars F exjt and

the initial quality distributions Fij0 are continuous and have compact support.
Because the Zjt(q, q′) distributions have compact support and are monotonic
in q′, all the Fijt have support that is a subset of some compact interval Q. A
useful special case is Q finite (discrete quality with a finite number of levels),
but the model also permits a continuum of qualities.

7We allow the possibility of exogenous scrapping to reflect the possibility that cars may
be totalled (but also allow the possibility that no exogenous scrapping occurs by allowing
all δjt to be 0. For simplicity, we model all exogenous scrapping in each period as occurring
at the start of the period. Although the model can have cars entering and leaving, it keeps
the set of consumers the same in all periods. We do so for simplicity only: nothing essential
changes if we expand the model to allow for exogenous entry and exit by consumers.

8This formulation relies on the assumption that car class j is all that potential buyers
observe (in particular, that buyers do not observe seller type i). If buyers do observe i,
the model could be adapted by thinking of each pair (i, j) as a separate class. This would
mean that a car’s class can change endogenously from period to period, but we believe that
our results extend in this case.
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4 Equilibrium

As usual, equilibrium is characterized by individual optimization and mar-
ket clearing. Market clearing can involve two possible complications: transac-
tions costs and the option of scrapping. Selling a car at price p in class j in
any period t yields a net gain of νj(p), while scrapping it yields −γj , so its
owner is indifferent between scrapping and selling at the price p

j
that satisfies

νj(pj) = −γj .9 At any price below p
j
, owners would rather scrap than sell

and so, because quantity demanded is positive, no price below p
j
is possible in

equilibrium.10 At any price above p
j
owners prefer selling to scrapping. Thus,

in equilibrium, for all j and t such that pjt > p
j
, the quantity of cars in class j

supplied in period t is equal to the quantity demanded. If pjt = p
j
, the excess

supply of cars, if positive, is scrapped.
Individual optimization has each consumer/household in each period maxi-

mizing expected utility based on prices, the variables observed, and beliefs about
the unobserved variables. In each period t, each owner decides whether to keep
her car. If not (or if a consumer entered the period without a car), she decides
whether to buy a car and, if so, in which class. Consumer h knows the current
vector (εhjt)j∈Jt and, if h owns car k, then h knows qkt. But h does not know
future vectors (εhjs)j∈Js (for s > t); nor does h know qkt for cars k owned
by others. The consumer relies on her beliefs about these unknowns, and, in
equilibrium, these beliefs match the actual distributions. Because of the inde-
pendence assumption, the distributions representing beliefs about future εhjs
are exogenously given.
Beliefs about current quality terms qkt are more complicated: the distribu-

tion of a prospective purchase’s quality is conditional on the fact that the car is
being offered for sale. In equilibrium, these beliefs match the quality distribu-
tions Gjt of cars actually offered for sale, which depend on endogenous consumer
choices.
Before defining equilibrium, it is helpful to consider the analogous notion

of competitive general equilibrium in a standard model (i.e., a model with no
private information). An equilibrium then consists of prices and quantities (sup-
plied and demanded). But, based on prices alone, one can check whether the
associated quantities, together with the given prices, comprise an equilibrium.
Thus, one can leave the quantities implicit and consider whether any given
price vector is an equilibrium price vector. So, finding an equilibrium amounts
to finding a suitable price vector. Thus, standard proofs of the existence of equi-

9To see that p
j
is well defined, note first that, as p → −∞, nj(p) ≤ p → −∞. Also,

as p → ∞, nj(p) → ∞. Hence, for any −γj , there exist p1 and p2 such that nj(p1) <
−γj < nj(p2). Because the function nj is continuous, the intermediate value theorem then
guarantees that the equation nj(p) = −γj has a solution. Because nj is strictly increasing,
the solution is unique. If scrapping is costly, the price p

j
can be negative.

10We assume that the exogenous suppliers have access to the same scrapping technology
as car owners (or to technology that is at least as effi cient), so they too would be unwilling
to sell if the price were below p

j
.
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librium leave the quantities implicit. They proceed by constructing a suitable
mapping from a set of price vectors into itself and showing that this mapping
has a fixed point. In our more complex setting that includes private information
about quality, quantities can still be left implicit, but prices alone are no longer
enough to determine an equilibrium because prices are now insuffi cient to deter-
mine individual choices (and hence demand). In addition to prices, we need the
distribution of the privately known quality terms for each available purchasing
option. To characterize an equilibrium, we now need to specify prices pjt and
quality distributions Gjt for each time period t ∈ T and each class j of cars
available at t (i.e., each j ∈ Jt). Thus an equilibrium is characterized by a
vector (pjt, Gjt)j∈Jt,t∈T of price-distribution pairs, one pair for each class of
cars in each period that the class is available.
We define a mapping Φ on a set X of such vectors and use the Schauder

Fixed-Point Theorem, the infinite-dimensional extension of the Brouwer Fixed-
Point Theorem, to show that a fixed point of the mapping exists. Our argument
requires that the set on which Φ is defined be compact. We thus need to
ensure that the set of possible prices considered and the set of possible quality
distributions are compact.
Recall that, because of the possibility of scrapping, no equilibrium price

pjt below p
j
is possible. There is no analogous, exogenously determined upper

bound on equilibrium prices. So, to meet the compactness requirement, we
choose an arbitrary p̄ such that p̄ > p

j
for all j ∈ J and we restrict prices pjt to

the compact set [p
j
, p̄]. We show below that we can choose p̄ suffi ciently large

that any fixed point of the function is an equilibrium.
To ensure that the set of distributions is compact, we consider the set

Σ of all probability distributions on the Borel sets in Q endowed with the
topology of convergence in distribution. This topology can be characterized
by what it means for a sequence {µn} of probability distributions in Σ to con-
verge to a probability distribution µ in Σ. There are various equivalent possible
characterizations, but a simple one is that µn converges to µ if and only if∫
Q
fdµn →

∫
Q
fdµ for all continuous real-valued functions f : Q → R.11 This

last condition can be stated equivalently in terms of expectation: if En denotes
expectation with respect to µn and E denotes expectation with respect to µ, the
condition is that µn converges to µ if and only if Enf → Ef for all continuous
f . A standard result says that, with this topology, Σ is compact.12

11Because Q is a compact set, we can state the condition in terms of continuous func-
tions rather than the more common and equivalent version in terms of bounded contin-
uous functions. Another common equivalent way of stating the condition is in terms of
the cumulative distribution function (cdf). If Fn is the cdf of µn and F is the cdf of µ,
then, as n → ∞, µn converges to µ if and only if for all q ∈ Q at which F is continuous,
Fn(q)→ F (q).
12See, for example, chapter 15 in Aliprantis and Border, who show that, with the speci-

fied topology, Σ is not only compact but also metrizable and separable, so that continuity of
functions on Σ or X can be characterized by sequences.
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5 The Fixed-Point Mapping

The function Φ maps the set of all vectors of price-distribution pairs: X =∏
t∈T

∏
j∈Jt([pj , p̄] × Σ) into itself. X is the Cartesian product of nonempty,

convex, and compact sets. It follows that X is itself nonempty, convex, and, by
the Tychonoff Product Theorem, compact.
The function Φ is generated by a procedure that we provide below. The pro-

cedure has two stages: a backward stage and then a forward stage. First, work-
ing backwards from the final period T to the initial period 0, it recursively deter-
mines various value functions and choice-probability functions. Then, starting
at period 0 and working forwards to period T , it determines demands and gener-
ates the updated quality distributions Gnewjt and updated prices pnewjt . Because
the procedure consists of a sequence of instructions, we hope the reader will
forgive our use of the imperative mood in specifying it.
In order to include the option of owning no car (case j = 0), we adopt the

following conventions that set the depreciation, price, cost, and quality of the
zero option to zero: for all t, δ0t = 0, p0t = 0, n0(0) = 0, and G0t and Z0t(q, 0)
are set to the degenerate distribution that puts all probability mass at zero.
Recall that the terminal value functions, V̄ijT+1(q) denoting the value to type

i of ending the final period T owning a car in class j of quality q, are given. For
t = T, T−1, . . . 2, 1, we recursively define the various terms needed for calculating
the updated quality distributions and prices.

5.1 The Backward Stage

Based on the input vector (pjt, Gjt)j∈Jt,t∈T , start in the final period, and
work backwards, period by period. In each period t, for each consumer type i
and each class j of car, determine the value function Vijt(q) that represents the
expected value (excluding the match term εhjt) to type i of owning and keeping
a car of class j as a function of its quality q ∈ Q:

Vijt(q) = vijt+q+β[δjtV̄i0t+1(0)+(1−δjt)
∫
Q

V̄ijt+1(qt+1)zjt+1(qt+1, q)dq. (1)

Next determine Wijt, the expected value (again excluding εhjt) to type i
of acquiring a car in class j. This is just the expectation of Vijt(q) taken with
respect to the quality distribution Gjt of cars in class j for sale in period t:

Wijt =

∫
Q

Vijt(q)dGjt(q). (2)

Then determine the function V̄ijt(q) that, for each quality q, gives the ex-
pected value to type i of entering period t with a car in class j. This reflects the
best option between keeping the car and disposing of it and choosing among any
of the options j′ ∈ Jt. The utility from keeping the car includes the match term
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εhjt, while the utility from switching to j′ includes εhj′t, and so the expectation
is taken with respect to the distribution of the ε terms. Thus,

V̄ijt(q) = Emax{Vijt(q) + εhjt,max
j′∈Jt
{Wij′t + εhj′t + νj(pjt)− pj′t}}, (3)

where the operator E denotes expectation with respect to the distribution of
the vector (εhj′t)j′∈Jt .
The final step in the backward part of the procedure is to determine various

choice-probability functions. A consumer h of type i who owns car k in class
j of quality q has the following |Jt| + 1 options: Either keep the car, yielding
Vijt(q) + εhjt or dispose of the car and choose class j′ ∈ Jt, yielding Wij′t +
εhj′t + νj(pjt)− pj′t. The probability that each of the |Jt|+ 1 choices is optimal
is given by the likelihood that the associated term is the maximum.13 Because
the match terms εhj′t for j′ ∈ Jt are continuously distributed and not perfectly
correlated, ties occur with probability zero, and so the optimal choice is almost
always unique, with only the one possible following exception: there can be a
positive probability of a tie between keeping a car of class j and buying another
from the same class (because the utility from each of these choices involves
the same match term εhjt). Because Vijt is strictly increasing, this positive
probability of a tie occurs (if at all) for a single value of q ∈ Q. This means
that all the choice probabilities are uniquely defined except for at most a single
q ∈ Q. Thus the procedure uniquely determines the equivalence class that
includes functions that differ only on a set of measure zero, which is all we
require for the procedure that determines the fixed-point mapping.
Accordingly, let Pj

′

ijt(q) denote the probability that a household of type i
sells its car of class j and quality q and buys one of class j′ in period t.14 Thus,
Pj
′

ijt(q) is the probability of the event:

Wij′t+εhj′t+νj(pjt)−pj′t ≥ max{Vijt(q)+εhjt, max
j′′∈Jt

{Wij′′t+εhj′′t+νj(pjt)−pj′′t}}.
(4)

Finally, the probability that a household of type i keeps its car of class j and
quality q in period t is:

P−1ijt (q) = 1−
∑
j′∈Jt

Pj
′

ijt(q). (5)

13 If j and j′ are both 0, the option of keeping the car is indistinguishable from the option
of selling the car of type 0 and then buying another car of type 0. Thus, for non-owners
(with j = 0), there are really only |Jt| distinct options, and we do not include the −1 op-
tion in this case. In other words, the recursion formulae below treat consumers who remain
without a car from period to period as if they were selling their type-zero car and buying
a different one. Since all type-zero purchases involve zero transactions costs and identical
utility consequences, no results in the model depend on this choice.
14Recall that we allow j and j′ to take the value 0. When j′is zero, P0ijt(q) is the proba-

bility that no car is purchased. When j is zero, Pj
′

i0t(q) is the probability that a household
that does not own a car buys a car of class j′.
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This completes the backward part of the procedure.

5.2 The Forward Stage

Now, we describe the forward part, showing how to obtain the updated
distributions of quality of cars for sale, Gnewjt , and to determine demands, which
are then used to generate the updated prices, pnewjt . To do so, we start at period
t = 0 and use the choice probabilities obtained in the backward procedure to
determine the masses Mijt and distributions Fijt. Recall that these masses and
distributions are given for period t = 0, and we compute them successively for
t = 1, 2, 3 . . . ., T .
At the start of each period t > 0, a fraction δjt of the cars of class j from

the previous period are exogenously scrapped. Let M
/

ijt denote the mass of
consumers of type i in period t who own a car in class j after this scrapping.
The owners whose cars were exogenously scrapped now own no car, so

M
/

i0t = Mi0t−1 +
∑

j∈Jt−1

δjtMijt−1. (6)

For j ∈ Jt−1,

M
/

ijt = (1− δjt)Mijt−1. (7)

Surviving cars that were of quality qt−1 have new quality q distributed with
conditional density zjt(q, qt−1). Thus, before consumers make their sales deci-
sions in period t, the density of the quality terms of cars in class j owned by
consumers of type i is

f bijt(q) =

∫
Q

zjt(q, qt−1)dFijt−1(qt−1). (8)

The mass of consumers of type i who buy a car of class j in period t is

Bijt =
∑

j′∈Jt−1

M
/
ij′t

∫
Q

Pjij′t(q)f
b
ij′t(q)dq, (9)

while the mass of consumers of type i who retain their car of class j from period
t− 1 through period t is

Rijt = M
/
ijt

∫
Q

P−1ijt (q)f
b
ijt(q)dq. (10)

The mass of consumers of type i who sell their car of class j in period t is
M

/
ijt −Rijt so that the total quantity of class j cars supplied in period t is

Sjt =
∑
i∈I

(M
/
ijt −Rijt) + Sexjt . (11)
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The total quantity of class j cars demanded in period t is

Djt =
∑
i∈I

Bijt. (12)

The updated quality distributions of cars of class j in period t (an output of
the function Φ) is

Gnewjt (q) =

∑
i∈IM

/
ijt

∫
x≤q

(1− P−1ijt (x))f bijt(x)dx+ Sexjt F
ex
jt (q)

Sjt
. (13)

The mass of consumers of type i who choose to own a car in class j in period
t is

Mijt = Bijt +Rijt, (14)

and the corresponding distribution describing the quality of the cars these con-
sumers own, is given by

Fijt(q) =
BijtG

new
jt (q) +M

/
ijt

∫
x≤q P

−1
ijt (x)f bijt(x)dx

Mijt
. (15)

Finally, the updated price of a car of class j in period t (the other output of
the function Φ) is

pnewjt = max{p
j
,min{p̄, pjt +Djt − Sjt}}. (16)

This price-adjustment mechanism increases the prices of goods in excess
demand and decreases the prices of all goods in excess supply, subject to the
requirement that prices remain within the fixed bounds p

j
and p̄. If excess

demand is zero the price is unchanged.
By finite induction, we establish that, if a sequence of initial values Gnjt

weakly converges to limit G0jt and a sequence of price vectors p
n
jt converges

to price vector p0jt, then, as n → ∞, at each stage of our procedure, the
limit of the sequence of functions or values calculated starting with xn =
(pnjt, G

n
jt)j∈Jt,t∈T converges to the functions or values calculated starting with

x0 = (p0jt, G
0
jt)j∈Jt,t∈T .

In Section 7, by verification of the sequential continuity of each step of the
backward and forward part of the construction of the function Φ, we establish
that Φ is a continuous function from X to itself. Thus, Φ has a fixed point, and,
for p̄ large enough, any fixed point is an equilibrium.

6 Some Properties of the Value Functions

A few properties of the value functions follow easily by finite induction:
Because Zjt+1(qt+1, q) is nonincreasing in q and V̄ijT+1is nondecreasing, Vijt is
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strictly increasing and hence V̄ijt is nondecreasing. Also Vijt and V̄ijt are both
continuous (in q). To see that Vijt is continuous, we need to show that∫

Q

V̄ijt+1(qt+1)zjt+1(qt+1, q)dqt+1

is continuous, and it is suffi cient to show that, for any sequence qn → q0, we
have∫

Q

V̄ijt+1(qt+1)zjt+1(qt+1, q
n)dqt+1 →

∫
Q

V̄ijt+1(qt+1)zjt+1(qt+1, q
0)dqt+1.

Because zjt+1 is bounded above, and Q, being compact, has finite Lebesgue
measure, the Dominated Convergence Theorem applies, and continuity of Vijt
follows. To see that V̄ijt is continuous, we note that Vijt(q) and νj(pjt) are
bounded and so there is a constant C such that, for any vector (εhj′t)j′∈Jt ,

max{Vijt(q)+εhjt,max
j′∈Jt
{Wij′t+εhj′t+νj(pjt)−pj′t}} ≤ C+ |εhjt|+

∑
j′∈Jt

|εhj′t|.

The right hand side has finite expectation because each ε term has finite expec-
tation. (Recall that we assume that ε has finite expectation, and so its absolute
value |ε| has finite expectation too.) The left hand side is continuous in q,
and thus, taking expectation, the continuity of V̄ijt follows from the Dominated
Convergence Theorem.

7 Showing that the Fixed-Point Mapping is Con-
tinuous

It is helpful to think of the procedure as proceeding via a sequence of stages:
a new stage occurs each time, in each period, one of the numbered equations is
referenced. Each of the numbered equations can be viewed as a mapping which
maps the various real variables and functions (of q) on the right-hand side to
produce as output the function (again of q) or real variable on the left-hand
sided. For example, recall equation (1):

Vijt(q) = vijt + q + β[δjtV̄i0t+1(0) + (1− δjt)
∫
Q

V̄ijt+1(qt+1)zjt+1(qt+1, q)dq.

Here, the left hand-side is a function, Vijt(q), and the inputs to the mapping
are the real variable V̄i0t+1(0) and the function V̄ijt+1(qt+1). In equation (2),

Wijt =

∫
Q

Vijt(q)dGjt(q),

11



the left hand-side is a real variable, and the inputs to the mapping are the
functions Vijt(q) and Gjt(q). Thus each line can be thought of as a mapping
Γm : Am → Bm.

We show that the mapping at each stage is sequentially continuous. A
mapping Γ : A→ B is sequentially continuous if, for every sequence {an} in A,
an → a0 ⇒ Γ(an)→ Γ(a0) , i.e. if the sequence {an} converges to a0, then Γ(an)
converges to Γ(a0). Continuity of a mapping always implies sequential continu-
ity and, if A is a metric space (or, more generally a first-countable space), the
converse also holds so that continuity and sequential continuity are equivalent.
It follows almost immediately from the definition that the composition of two
sequentially continuous mappings is sequentially continuous: If Γ1 : A1 → B1
and Γ2 : A2 → B2 are sequentially continuous and B1 ⊂ A2, then the com-
posite mapping, Γ2 ◦ Γ1, is sequentially continuous. Thus, by induction, the
composition of any number of sequentially continuous mappings is sequentially
continuous.
For a sequence of scalars (for example, prices pjt or masses Mijt) the mean-

ing of convergence is unambiguous, but spaces of functions (for example, values
Vijt(q) or choice probabilities Pj

′

ijt(q), both defined for all q ∈ Q), admit many
notions of convergence. For each mapping specified by the right-hand side of
a numbered equation, we must choose a criterion that is weak enough to allow
proof of the required convergence, yet strong enough to ensure the convergence
of the scalars and functions constructed subsequently in the procedure. For
the value functions Vijt(q) and V̄ijt(q), we use uniform convergence on the set
Q. (Using uniform convergence here amounts to using the supremum norm
sup
q∈Q
|V (q) − Ṽ (q)| to determine the distance between any two functions V and

Ṽ .) For the choice-probability functions Pj
′

ijt(q) and P
−1
ijt (q), we consider equiv-

alence classes of all such functions that are equal almost everywhere on Q with
regard to standard Lebesgue measure, and the notion of convergence is the
essential supremum norm or ||∞, so that the distance between any two (equiv-
alence classes of) functions P and P̃ is inf{λ > 0 : |P(q) − P̃(q)| ≤ λ almost
everywhere}. For the density functions, f bijt(q), and the distribution functions,
Fijt(q), we use pointwise convergence and, for Gnewjt (q) and Gjt(q), we use con-
vergence in distribution. With these convergence criteria, we verify that each
of the numbered equations used in determining the fixed-point mapping defines
a sequentially continuous mapping.
First consider equation (1) above. We can assume that V̄ ni0t+1(0) converges to

V̄ 0i0t+1(0), and that V̄ nijt+1(qt+1) converges uniformly to V̄
0
ijt+1(qt+1), or, equiva-

lently that sup
qt+1∈Q

|V̄ nijt+1(qt+1)−V̄ 0ijt+1(qt+1)| converges to zero, and so sup
q∈Q
|V nijt(q)−

V 0ijt(q)| is bounded above by

β|δjt(V̄ ni0t+1(0)−V̄ 0i0t+1(0))|+(1−δjt)
∫
Q

sup |V̄ nijt+1(qt+1)−V̄ 0ijt+1(qt+1)|zjt+1(qt+1, q)dq|,

which converges to zero as required.

12



Next consider equation (2): Wijt =
∫
Q
Vijt(q)dGjt(q). Assuming V nijt(q) con-

verges uniformly to V 0ijt(q) and G
n
jt(q) converges in distribution to G

0
jt(q), we

need to show that∫
Q

V nijt(q)dG
n
jt(q)−

∫
Q

V 0ijt(q)dG
0
jt(q)→ 0.

The left-hand side can be written as

∫
Q

[V nijt(q)− V 0ijt(q)]dGnjt(q) +

∫
Q

V 0ijt(q)dG
n
jt(q)−

∫
Q

V 0ijt(q)dG
0
jt(q). (17)

Because V 0ijt(q) is continuous and G
n
jt → G0jt in distribution,∫

Q

V 0ijt(q)dG
n
jt(q)→

∫
Q

V 0ijt(q)dG
0
jt(q),

or, equivalently ∫
Q

V 0ijt(q)dG
n
jt(q)−

∫
Q

V 0ijt(q)dG
0
jt(q)→ 0.

Because V nijt(q) − V 0ijt(q) converges uniformly to zero, the first integral in (17)
also converges to 0, and the result follows.
For (3) V̄ijt(q) = Emax{Vijt(q) + εhjt,max

j′∈Jt
{Wij′t + εhj′t + νj(pjt)− pj′t}},

we must show that, if V nijt(q) converges uniformly to V
0
ijt(q), W

n
ij′t →W 0

ij′t and
pnjt → p0jt for j

′ ∈ Jt, then

Emax{V nijt(q) + εhjt,max
j′∈Jt
{Wn

ij′t + εhj′t + νj(p
n
jt)− pnj′t}}

converges uniformly to

Emax{V 0ijt(q) + εhjt,max
j′∈Jt
{W 0

ij′t + εhj′t + νj(p
0
jt)− p0j′t}}.

For any vector (εhj′t)j′∈Jt ,

max{V nijt(q) + εhjt,max
j′∈Jt
{Wn

ij′t + εhj′t + νj(p
n
jt)− pnj′t}}

converges uniformly to

max{V 0ijt(q) + εhjt,max
j′∈Jt
{W 0

ij′t + εhj′t + νj(p
0
jt)− p0j′t}}.

Taking expectations gives the required result.
In (4) Pj

′

ijt(q) is the probability of the event,

Wij′t+εhj′t+νj(pjt)−pj′t ≥ max{Vijt(q)+εhjt, max
j′′∈Jt

{Wij′′t+εhj′′t+νj(pjt)−pj′′t}}.
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Recall that ties can occur with positive probability for at most one value of q. So
these probabilities and the probability P−1ijt (q) of retaining the car are uniquely
determined almost everywhere. Fix i, j, t, and j′. To denote the nth term in
the sequence of values Pj

′

ijt(q), we use the notation P
j′(n)
ijt (q). So, Pj

′(n)
ijt (q) is the

probability of the event,

Wn
ij′t+εhj′t+νj(p

n
jt)−pnj′t ≥ max{V nijt(q)+εhjt, max

j′′∈Jt
{Wn

ij′′t+εhj′′t+νj(p
n
jt)−pnj′′t}},

and Pj
′(0)
ijt (q) is the probability of the analogous event,

W 0
ij′t+εhj′t+νj(p

0
jt)−p0j′t ≥ max{V 0ijt(q)+εhjt, max

j′′∈Jt
{W 0

ij′′t+εhj′′t+νj(p
0
jt)−p0j′′t}},

in which all the n superscripts are replaced by 0 superscripts. Suppose V nijt(q)
converges uniformly to V 0ijt(q), W

n
ij′t → W 0

ij′t,and pnj′t → p0jt for j
′ ∈ Jt .

We show that, except on a set of measure zero, Pj
′(n)
ijt (q)− Pj

′(0)
ijt (q) converges

uniformly to 0.
Using the continuity of the νj functions, for any ε > 0 we can choose N such

that n > N ensures that
|Wn

ij′t −W 0
ij′t| < ε/2 , |νj(pnjt) − pnj′t − (νj(p

0
jt) − p0j′t)| < ε/2 and, for all

q ∈ Q, |V nijt(q)− V 0ijt(q)| < ε.
Thus, as long as n > N, the only way that there can be a difference in the

optimal choice between the case with the superscript n values and the limit
case with the superscript 0 values is if the corresponding εhj′t terms differ by
an amount that is smaller than ε in absolute value. But since the εhj′t terms
are continuously distributed, the probability of there being such a difference
converges uniformly to zero as ε converges to zero.

For (6) and (7), becauseM
/

i0t = Mi0t−1+
∑

j∈Jt−1 δjtMijt−1 andM
/

ijt = (1−
δjt)Mijt−1 are just linear combinations of previously determined real variables,
the required convergence follows immediately.

Recalling (6) f bijt(q) =

∫
Q

zjt(q, qt−1)dFijt−1(qt−1), since we can assume

Fnijt−1(qt−1) converges pointwise to F
0
ijt−1(qt−1), it converges in distribution a

fortiori. Because zjt is continuous, for each q ∈ Q, the integral
∫
Q

zjt(q, qt−1)dF
n
ijt−1(qt−1)

converges to
∫
Q

zjt(q, qt−1)dF
o
ijt−1(qt−1), which is the pointwise convergence re-

quired. Note that zjt, being continuous on compact set Q×Q, is bounded above
by B, say, and so

f bijt(q) =

∫
Q

zjt(q, qt−1)dFijt−1(qt−1) ≤
∫
Q

BdFijt−1(qt−1) = B

In (9) Bijt =
∑

j′∈Jt−1 M
/
ij′t

∫
Q

Pjij′t(q)f bij′t(q)dq, the convergence of the

Pj(n)ij′t (q) in the essential sup norm ensures that the integrand converges point-

wise (except on a set of measure zero). Since the Pj(n)ij′t (q) are bounded above by
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1 and (as just shown ) f bij′t(q) is also bounded above, the required convergence
follows by the Dominated Convergence Theorem.

For (10) Rijt = M
/
ijt

∫
Q

P−1ijt (q)f bijt(q)dq. Exactly the same argument applies

as in (9) above.
(11) and (12) Sjt =

∑
i∈I(M

/
ijt − Rijt) + SEjt and Djt =

∑
i∈I Bijt. Again,

as in (6) above, the required convergence follows immediately.

(13) Gnewjt (q) =

∑
i∈IM

/
ijt

∫
x≤q

(1−P−1ijt(x))f
b
ijt(x)dx+S

E
jtF

E
jt(q)

Sjt
For each q, the con-

vergence of the sum
∑

i∈IM
/
ijt

∫
x≤q

(1 − P−1ijt (x))f bijt(x)dx follows by the same

argument as in (7) above. Adding SEjtF
E
jt (q) and dividing by Sjt preserves the

convergence property because addition and division by a nonzero scalar are con-
tinuous operations. Since we have convergence for each q, pointwise convergence
is established, implying convergence in distribution.
(14) Mijt = Bijt +Rijt converges as in (6).
(15) The pointwise convergence of

Fijt(q) =
BijtG

new
jt (q) +M

/
ijt

∫
x≤q P

−1
ijt (x)f bijt(x)dx

Mijt

follows by the same arguments used in (13) above.
Finally, since (16) pnewjt = max{p

j
,min{p̄, pjt +Djt−Sjt}} gives new prices

as a continuous function of real variables the sequential continuioty follows im-
mediately.

8 Existence of Equilibrium

The previous section establishes that, at each stage of the procedure, the
function from X to the space of functions or scalars constructed at that stage is
sequentially continuous. In particular, the map from X that generates Gnewjt is
sequentially continuous. Because X is metrizable, the map is continuous. The
function Φ satisfies all the requirements of the Schauder Fixed-Point Theorem.
This theorem says that, if X is a nonempty, compact, convex subset of a locally
convex Hausdorff space, and if the function Γ : X → X is continuous, then the
set of fixed points of Γ is nonempty and compact. Hence a fixed point exists.
We finally show that if p̄ is suffi ciently large then any fixed point is an

equilibrium. Because of the way the function assigns prices, it is suffi cient to
show that if, at a fixed point, any price pjt is at the maximum level p̄ then
there is not an excess demand for cars in class j in period t. Ruling out excess
demand at arbitrarily high prices is not entirely straightforward here: Quantity
demanded is strictly positive, no matter how high the price, because the support
of the distribution of the match terms εhjt is not bounded above. This would
not matter, if quantity supplied were bounded away from zero, but, because
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of the possibility of endogenous scrapping and of endogenous supply, there is
no natural, strictly positive, lower bound on quantity. Nevertheless, there are
only two possible ways that quantity can be close to zero in period t: In some
prior period t′ < t, there either was endogenous scrapping, or the quantity
supplied was close to zero. In either case the price in period t′ would have to
be suffi ciently low. Since pjt = p̄, anyone buying at the low price pjt′ in period
t′ and selling at price p̄ in period t can achieve an expected lifetime utility level
of order p̄. But, by the second lemma in the appendix, at any price vector,
the average utility is bounded above by a constant independent of p̄. Thus the
fraction of consumers receiving a utility level of order p̄ is (at most) of order
1/p̄. By choosing p̄ suffi ciently large we can thus infer that there is no excess
demand for any good at the fixed point, and hence an equilibrium exists.

9 Conclusion

The existence result is worthwhile in its own right. For us, the most ap-
pealing aspect of the proof is that it outlines a method that promises to allow
the actual computation of the equilibrium in models with persistent private
information of the kind described.
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10 Appendix

Lemma 1 If a real random variable X̃ has finite expectation then so does the
random variable X̃+ = max{X̃, 0}.

Proof. Finite expectation means that both terms in the sum

0∫
−∞

xdFX̃(x) +

∞∫
0

xdFX̃(x) are finite (where FX̃ is the distribution function of X̃. The second

term is just the expectation of X̃+.

Lemma 2 At prices given by a fixed point of the function the market-wide aver-
age discounted expected lifetime utility of consumers, starting at any time period,
is bounded above by a finite number independent of p̄.

Proof. By the previous lemma the mean of ε+hjt = max{εhjt, 0} is finite. The
utility flow in period t to a consumer h of type i from owning car k in class
j is uhkt = vijt + qkt + εhjt. Because there are finitely many vijt and because
qkt ∈ Q where Q is compact, there is a bound B independent of p̄ such that, for
all i, j, k, t, uhkt ≤ B+ε+hjt ≤ B+

∑
j∈Jt ε

+
hjt. The mean of the last sum is finite

and thus we can place a uniform bound B′ independent of p̄ on the expected
utility flow from owning cars. If the household buys a vehicle of class j and
sells one of class j′ in period t then its utility that period is bounded above by
B′ + pjt − pj′t. Let S(h, j, t) be an indicator function that, in period t, is equal
to 1 if household h sells a car in class j, is equal to −1 if h buys a car in class
j, and is equal to zero otherwise. We can bound household h utility in period

17



t above by B′ +
∑

j∈Jt S(h, j, t)pjt. Integrating over all h in the market, we see
that average utility flow is bounded above by

B′ +
∑
j∈Jt

(Sjt − SEjt −Djt)pjt

and hence by
∑

j∈Jt(Sjt − Djt)pjt the sum of prices multiplied by net excess
supply. At a fixed point, if the excess supply of cars in class j is positive, then
the associated price is at the minimum level p

j
. Hence the average expected

utility derived in period t is bounded above by the product of the population
and the maximum of the p

j
. Discounting and adding across periods this gives

an upper bound, independent of p̄, on expected discounted utility starting in
any period.
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