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Abstract

We study list price competition when firms can individually target discounts

(at a cost) to consumers afterwards, and we address recent privacy regulation

(such as the GDPR) that has allowed consumers to choose whether to opt in to

targeting. Targeted consumers receive poaching and retention discount offers.

Equilibrium discount offers are in mixed strategies, but only two firms vie for

each contested consumer and the final profits on them are Bertrand-like. When

targeting is unrestricted, firm list pricing resembles monopoly. For plausible

demand conditions, and if targeting costs are not too low, firms and consumers

are both worse off with unrestricted targeting than if it were banned. However,

targeting leads to higher (lower) list prices if demand is convex (concave), and

either side of the market can benefit if list prices shift enough in its favor. Given

the choice, consumers opt in only when expected discounts exceed privacy costs.

Under empirically plausible conditions, opt-in choice makes all consumers better

off.
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1 Introduction

As data analytics and pricing algorithms become common business
practice in the digital era, there are growing concerns about the possibility
that companies use such tools to engage in personalised pricing.

OECD Secretariat, 2018

Advances in collecting and analyzing consumer data are transforming first-degree

price discrimination from a textbook abstraction into a viable prospect. Data ag-

gregators can develop a rich picture of individual search and purchase behavior by

stitching together cookies and location data from computers and mobile devices, web

search content, demographic information, etc. Due to improvements in computing

power and forecasting algorithms, this wealth of data can be used to predict an indi-

vidual’s willingness to pay with increasing precision.

A chorus of competition regulators on both sides of the Atlantic has called for

more scrutiny of personalized pricing.1 Evidence suggests that it happens but is

not yet widespread.2 However, these regulators caution against underestimating the

issue on the basis of current evidence. Personalized pricing is notoriously diffi cult

to prove conclusively, firms have incentives to disguise it, and technical barriers to

its use are dropping by the day. Observers suggest that because firms fear consumer

backlash if individualized pricing is too transparent, they are likely to pursue the goal

by less direct channels, such as targeted discounting.3 Discounts tend to be perceived

1These include the OECD Competition Committee, the European Commission, the UK’s Com-
petition and Markets Authority, its predecessor, the Offi ce of Fair Trading, the German Bun-
deskartellamt, and the US White House. (See OECD-Sec 2018, EC 2018, UK-CMA 2018, UK-OFT
2013, EOP 2015, and the comments of Andreas Mundt in “Amazon’s Alexa May Be a Problem,”
WirtshaftsWoche, July 14, 2017.)

2The technological advances making personalization possible and anecdotal evidence
of its use are well surveyed in the business and popular press (see e.g. "White Pa-
per Digital Transformation of Industries: Media Industry," World Economic Forum
with Accenture, January 2016, http://reports.weforum.org/digital-transformation/wp-
content/blogs.dir/94/mp/files/pages/files/dti-media-industry-white-paper.pdf; “Shopper Alert:
Price May Drop for You Alone,”New York Times, August 9, 2012; also, “A Special Price Just for
You,”Forbes, November 17, 2017.

3Fears of a consumer backlash are sometimes attributed to a controversial and well-publicized
instance of apparent price personalization by Amazon in 2000. Bourreau and de Streel (2018) cite
this case to explain the rarity of targeted pricing and note that “there are subtler — and more
acceptable, from a consumer viewpoint —ways for a company to achieve the same outcome. First,
firms can offer the same uniform prices to all consumers, but with personalised discounts.”See also
OECD-UK (2018) for similar arguments on targeted discounting.
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favorably by consumers, and differences in final prices due to personalized discounting

can be diffi cult for both consumers and researchers to detect. Our paper develops

a theory of personalized discounting. With personalized discounting each consumer

becomes an individual market (Prat and Valletti, 2021), but these markets are linked

together by the list prices that consumers without a discount offer must pay.

Meanwhile, there is growing concern about the consumer privacy implications of

exploiting individualized data for business practices like targeted discounting. Re-

search indicates that consumers object to the loss of privacy for psychological reasons

(the ‘creepiness’ factor), for fear of having their information used against them in

markets, and because of the risks of fraud and identity theft (Tucker, 2015, Turow et

al,. 2009, White et al., 2008, Acquisti et al., 2016). A series of significant consumer

data breaches have highlighted the vulnerability of the sensitive data firms have col-

lected on consumers.4 Responding to these concerns, the European Union enacted

the General Data Protection Regulation in 2018. The GDPR codifies consumer rights

to privacy and control over individual data and requires firms to obtain opt-in con-

sent from customers for data tracking. US regulators have been slower to act, but

three states have passed privacy regulation and the US Council of Economic Advisers

(2015) has outlined precursors for a national policy. Our paper studies an opt-in

policy under which consumers rationally trade off the market benefits of permitting

their data to be used against the costs of lost privacy.

We assume firms first set public list prices for (differentiated) products. But

then (at a cost), a firm can identify consumers with specific taste profiles and send

them individualized discount offers. A consumer’s taste profile is the list of her

valuations for all the products on sale; thus firms are assumed to be able to target

with pinpoint precision. This exaggerates the truth, of course, but by less and less

as databases grow and data-mining analytics improve. We first compare outcomes

with unrestricted targeting to those when targeting is forbidden (or too expensive),

focusing on how demand curvature shapes pricing, firm profits, and consumer surplus.

Then we evaluate the impact of privacy regulation that permits consumers to opt into

targeted advertising.

Two key costs are central to our analysis. Firms bear an exogenous cost to send a

targeted ad, representing the expenses of identifying a desired consumer, formulating

4Cambridge Analytica improperly accessed data from 87m Facebook users from 2015-2018. Face-
book exposed personal data of 50m in 2018, allowing hackers to access user accounts.
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a customized offer, and delivering that offer to her.5 And in our study of privacy

regulation in Section 6, consumers bear a “lost privacy”cost if they opt in to receiving

personalized offers; this could reflect the expected cost of resolving identity theft or

simply a personal nuisance cost.

We focus first on the laissez-faire regime where firms can employ targeting when-

ever they find it cost-effective. Equilibrium competition endogenously sorts out which

consumers will be captive and which will be contested with targeted discounts. The

former, for lack of better offers, buy their favorite products at list price. Each con-

tested consumer is fought over by her top two firms (those making her two favorite

products): her second-favorite tries to poach her business with undercutting offers,

and her favorite can simultaneously advertise to try to retain her.

We show that the expected profits on a contested consumer are Bertrand-like: her

favorite firm earns its value advantage over the runner-up, her second-favorite firm

earns zero, and no other firm advertises to her. However, the second-best firm must

win the sale with positive probability (since it would not pay to advertise otherwise),

so the discounting equilibrium will involve mixed strategies and is allocatively ineffi -

cient. Discount competition favors consumers with a relatively strong second-favorite

product (versus those who strongly prefer their favorite).

Bertrand-like profits in the discounting stage simplify the firms’profits for the

first stage, when they set list prices. The nature of price competition is a main

novelty. A firm faces a familiar marginal-inframarginal trade-off in pricing to its

captive consumers, with one catch: the downside of pricing out a marginal captive

consumer is not the full profit margin lost on her, but just the cost of the targeted

ad that will be needed to win her back (at a small discount). Furthermore, because

the buffer zone of contested consumers means that list prices never compete against

each other head-to-head, a firm’s list price choice simplifies to a (quasi-)monopoly

problem. When ad costs make targeting prohibitively expensive, firms compete with

list prices at the turf boundaries as in classic oligopolistic competition. Interestingly,

under privacy regulation, the margin of competition remains at the turf boundary for

those who do not opt in, but is at the edge of the buffer zone for the others.

Because a firm’s list price must sometimes compete against rivals’discounts, the

5One motivation is that firms are served by competitive data brokers (or ad platforms) who are
able to match them to consumers with any particular profile at cost. Another is that firms identify
consumers with the desired profiles from their own databases; the targeting cost reflects the internal
cost of data processing, formulating an optimal discount offer, and delivering it.

3



analysis hinges on a firm’s captive demand function 1 − G (y): the measure of con-

sumers who prefer its product by at least y dollars over their next best alternatives.

This captive demand function may be derived from whatever primitive assumptions

one prefers about the underlying consumer taste distribution. The appeal of our ap-

proach is that the fine details of primitive tastes may be left in the background: all

of the important features of competition depend only on the captive demand func-

tion, and our main qualitative results hold for any underlying distribution of tastes

satisfying mild conditions on 1−G (y).

Our first main policy conclusions concern who gains from unrestricted targeting,

relative to a complete ban. We argue it is plausible to expect captive demand to

be convex and logconcave.6 In this case, targeting reduces profits, and also reduces

consumer surplus if targeting costs are not too low (Proposition 2). These conclusions

are connected to the fact that targeting pushes list prices up if demand is convex or

down if concave (Proposition 1). Targeting always reduces total welfare due to the

ineffi ciencies associated with discounting.7

We then use the model to study whether consumers would be better off with pri-

vacy regulation, under which consumers decide whether to opt in or out by rationally

weighing expected price discounts against the cost of foregone privacy. Under plausi-

ble demand conditions similar to those above, every consumer benefits from an opt-in

policy (compared to unrestricted targeting) regardless of her preference for privacy.

Consumers who choose to opt out benefit from preserved privacy, and by opting out

they encourage stronger competition in list prices —this creates a spillover benefit for

all consumers because average discount prices are anchored to list prices. Concave

captive demand (which we argue is less plausible empirically) is an exception: the

direction of this spillover reverses, so an opt-in policy will hurt some consumers by

raising prices. In evaluating a policy, list prices can be a good proxy for demand

curvature —if the opt-in policy induces lower list prices, consumers have been made

unambiguously better off.

Our paper relates to the classical literature on informative targeted advertising

and competitive price discrimination. In seminal papers (including Butters, 1977,

Grossman and Shapiro, 1984, and Stahl, 1994), informative advertising has typically

6Logconcavity is commonly assumed to ensure existence of the standard oligopoly equilibrium,
and convexity arises naturally if consumers’product valuations are independent.

7We make the usual assumption that the market is fully covered; consequently, the no-targeting
equilibrium is effi cient. We discuss relaxing this assumption in the conclusions.
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meant that consumers learn about both products and prices from ads; in contrast,

we assume away costs of publicizing products and list prices in order to sharpen the

focus on discount advertising. Targeting permits firms to address different market

segments with different levels of product information, and perhaps different prices.

Duopoly examples with homogeneous products include Galeotti andMoraga-González

(2008) (with no price discrimination and fixed market segments) and Roy (2000) (with

tacit collusion on an endogenous split of the market). Differentiated product models

based on Varian’s (1980) Model of Sales (with consumers exogenously segmented

into captive “loyals”and price-elastic “shoppers”) include Iyer et al. (2005) (where

targeting saves firms from wasted advertising) and Chen et al. (2001) (where errors

in targeting help to soften price competition), and Esteves and Resende (2016) (who

break the loyal/shopper dichotomy with consumers who prefer one product but would

switch for a suffi ciently better price).8 Several of these papers find that targeting

may be profit-enhancing for some model parameters, but the specificity of the models

(usually duopolies with restrictive specifications of consumer tastes) makes it diffi cult

to discern general conclusions, and the demand curvature channel that we highlight

is novel. Our concluding remarks offer some thoughts about how to reconcile our

conclusions about profits with the varied claims in the literature.

Another branch of the literature examines oligopoly price discrimination when

consumers can be informed about prices without costly advertising. One strand,

dating to Hoover (1937) and through to Lederer and Hurter (1986) and Thisse and

Vives (1988), focuses on spatial competition.9 Thisse and Vives consider duopolists

who can charge location-specific prices to consumers. As location is the dimension

along which consumer preferences vary, this permits individualized pricing similar

to that in our paper (but without costly advertising), and they reach some similar

conclusions (including that competitive price discrimination hurts profits).

Our two stages of price-setting are most similar to prior work on couponing, in-

cluding Shaffer and Zhang (1995, 2002) and Bester and Petrakis (1995, 1996). Bester

and Petrakis (1996) share our structure of public list prices and costly discount ads

but assume coarse targeting (two market segments) and no retention advertising.

They find that the option to send coupons reduces list prices and profits; this is

8See also Brahim et al. (2011). Esteban et al. (2001) develop a different notion of targeting
precision (under monopoly) based on nested subsets of consumers.

9See also Anderson and de Palma (1988) and Anderson, de Palma, and Thisse (1989).
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driven partly by an assumption that firms cannot discount to their ‘home’segments,

so retaining those consumers requires a more competitive list price.

Personalized pricing (or first-degree price discrimination) is an old concept given

new relevance by advances in targeting technology. For an overview, Acquisti et al.

(2016) discuss the burgeoning recent literature in their survey on consumer privacy,

while Taylor and Wagman (2014) tabulate comparisons of profits and consumer sur-

plus under uniform or personalized pricing for a number of common demand models.

Anderson, Baik, and Larson (2015) study competition for an individual consumer

when price offers are costly (with an emphasis on equilibrium selection). Using argu-

ments similar to some of those in Section 3, they find that equilibria require mixing,

a common theme in other settings with winner-take-all competition and participation

costs.10 However their scope is limited to a single consumer and a single round of

price offers. In contrast, we study a market with many consumers who all have the

option to buy at list prices. This option changes the way that firms compete for

individuals with discount offers. The option to buy at list prices creates a strategic

linkage that ties firms’“macroscopic” competition over the entire market to their

“microscopic” discount competition over individual consumers. The self-contained

presentation of the personalized pricing subgame, with clean reduced-form results for

profits and consumer surplus, makes it accessible for “plug-and-play” use in other

applications of two-stage competition.

Belleflamme and Vergote (2016) and Chen et al. (2018) are closest to our opt-in

analysis because they permit customers to hide from profiling. The former show (for

monopoly) that tracking technology lowers consumer surplus because firms are able to

price discriminate, but hiding technology worsens consumer surplus further because

the firm raises regular prices to discourage hiding. In Chen et al. (2018), each firm

in a Hotelling model can personalize prices for consumers in its target segment and

offer a uniform “poaching”price for non-targeted customers. Hiding consumers make

it harder to poach, softening competition through higher prices for non-targeted con-

sumers. Both papers suggest, counterintuitively, that privacy regulation empowering

consumers may make them worse off. While this is also a possibility in our analysis,

for empirically plausible demand systems, consumers will typically be better off with

opt-in choice.

10See e.g. Hillman and Riley (1989), Sharkey and Sibley (1993), Narasimhan (1988), and Koçaş
and Kiyak (2006).
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Section 2 describes the model. Section 3 solves the second stage of the game,

competition in targeted discounts. Section 4 analyzes the first-stage competition

in list prices and characterizes the equilibrium absent opt-in. Section 5 presents

our results for prices and profits, welfare, and consumer surplus (absent opt-in) and

stresses the key role of the demand curve shape. Section 6 analyzes consumer opt-in;

Section 7 concludes with suggestions for future work. Proofs omitted from the main

text appear in the Appendix. At times we point the reader toward additional material

in the discussion paper version of this article (Anderson et al., 2019), henceforth “the

DP.”

2 Model

Each of n firms produces a single differentiated product at marginal cost normalized

to zero, to be sold to a unit mass of consumers. Each consumer wishes to buy one

product; consumer i’s reservation value for Firm j’s product is rij. Later we will

discuss the primitive distribution of these consumer tastes. For now it will suffi ce

to define a distribution function Gj (y), y ∈
[
y, ȳ
]
for each firm, where 1 − Gj (y) is

the fraction of consumers who prefer product j over their best alternative product

(among the n − 1 other firms) by at least y dollars. (We permit the possibility of

ȳ =∞, y = −∞.) Formally, if r̂i,−j = maxj′∈{1,...,n}\j rij′ , then

Gj (y) = |{i | rij ≤ r̂i,−j + y}| .

Later, 1 − Gj (y) will be seen to be closely related to Firm j’s demand. We will

generally impose primitive conditions that ensure the following:

Condition 1 The density gj (y) = G′j (y) is strictly log-concave.11

Condition 2 The functions Gj (y) are symmetric: Gj (y) = G (y) for all j ∈ {1, ..., n}.

There are two stages of competition. In Stage 1, the firms simultaneously set

publicly observed list prices plj that apply to all consumers. Then in Stage 2, firms

11We observe that strict logconcavity of the density gj (y) implies strict logconcavity of the captive
demand function 1−Gj (y) by the Prékopa-Borell theorem. Condition 1 is suffi cient for our results,
but stronger than necessary in some cases. In particular, our results apply to a running example of
Hotelling demand for which 1−G (y) is strictly logconcave but g (y) is only weakly logconcave.
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can send targeted discount price offers: for each consumer i, Firm j may choose

to send an advertisement at cost A offering her an individualized price pdij ≤ plj.

One interpretation is that firms initially know the distribution of tastes, but cannot

identify which consumers have which valuations. For example, Firm j understands

that consumers with the taste profile (ri1, ri2, ..., rij, ...) exist, but it does not know who

they are or how to reach them. Then A is the cost of acquiring contact information

for consumers with this taste profile (through in-house research or by purchase from

a data broker), plus the cost of reaching them with a personalized ad.

Finally, each consumer purchases one unit at the firm that offers her the greatest

net consumer surplus; consumer i’s surplus at Firm j is rij minus the lowest price

offer Firm j has made to her. We assume that if a consumer is indifferent between

two list prices, or between two advertised prices, she chooses randomly. However,

if she is indifferent between one firm’s list price and another’s advertised discount

price, she chooses the advertised offer. This tie-breaking assumption is motivated the

fact that ads are sent after observing list prices, so an advertiser that feared losing

an indifferent consumer could always ensure the sale by improving its discount offer

slightly. Note that because products are differentiated, an undercutting offer is one

that delivers more surplus to a consumer than rival firms’offers.

We assume that consumers’outside options are suffi ciently low that they always

purchase some product, that is, the market is fully covered. While this assumption is

commonly imposed in the literature, it has a bit more bite here because equilibrium

list prices may rise as the ad cost A falls. We discuss the implications of allowing

outside options to bind in the conclusion. We say that consumer i is on the turf of

Firm j if it makes her favorite product; that is, if rij > rik for all k 6= j. She is on a

turf boundary if she is indifferent between her two favorite products. Finally, we say

that product j is her default product if it is the one she would buy at list prices, that

is, if rij − plj > rik − plk for all k 6= j.

To illustrate how the reduced-form distribution G (y) may be derived from under-

lying consumer tastes, we present two settings that will be used as running examples.

Example 1: Two-firm Hotelling competition (with linear transport costs)
Firms 1 and 2 are at locations x = 0 and x = 1 on a Hotelling line, with consumers

uniformly distributed at locations x ∈ [0, 1]. We refer to a consumer by location x

rather than index i. A consumer’s taste for a product at distance d is R−T (d), with

T (d) = td. Then the set of consumers who prefer Firm 1 by at least y dollars is those

8



to the left of x̄, where x̄ satisfies R− tx̄ = y +R− t (1− x̄). Solving for x̄, we have

1−G (y) =
1

2
− 1

2t
y

The same expression applies for Firm 2, so no subscript on G (y) is needed. In this

case, 1−G (y) but not g (y) is strictly log-concave.12 This setup generalizes easily to

the case of n firms located on a circle.

Example 2: n firm multinomial choice (independent taste shocks)
There are n firms, and consumer i’s taste rij for Firm j’s product is drawn i.i.d.

from the primitive distribution F (r) with support [r, r̄].13 Except where otherwise

noted, assume that F (r) and its density f (r) are both strictly log-concave.

Condition on the event that a consumer’s best alternative to Firm 1, over products

2, ..., n, is r. Firm 1 beats this best alternative by at least y (that is, ri1 ≥ r+y) with

probability 1 − F (r + y). But the consumer’s best draw over n − 1 alternatives has

distribution F(1:n−1) (r) = F (r)n−1, so we have:

1−G (y) =

∫ r̄

r

(1− F (r + y)) dF(1:n−1) (r) (1)

Without targeted ads, this is a standard multinomial choice model (see e.g. Perloff

and Salop, 1985). If the taste shocks are Type 1 extreme value, then we have the

multinomial logit model that is widely used in empirical analysis.14 The novelty

in our setting is that a firm does not have to settle for treating these taste shocks

as unobserved noise —at a cost, it can target customized offers to consumers with

particular taste profiles. Conveniently, 1 − G (y) inherits the log-concavity of the

primitive taste distribution. We summarize this with other properties below. Parts

(ii) and (iii) will be useful for understanding how targeting affects list prices and how

list prices vary with the number of firms.

12For non-linear transport costs T (d), the analogous condition is that 1 − G (y) = x̄, where
x̄ satisfies rx̄1 − rx̄2 = T (1− x̄) − T (x̄) = y. Thus G (y) is defined implicitly by T (G (y)) −
T (1−G (y)) = y. One can confirm that logconcavity of 1−G (y) is satisfied if x (T ′ (x) + T ′ (1− x))
is increasing.
13We allow for the possibility that r̄ =∞ or r = −∞.
14That is, if the taste distribution is F (r) = exp

(
−e−r/β

)
, then the captive demand function is

1−G (y) = 1
1+(n−1)ey/β

. For theoretical applications see Anderson, de Palma, and Thisse (1992).
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Lemma 1 Strict log-concavity of f (r) implies the following:

(i) The functions G (y), 1−G (y), and g (y) = G′ (y) are strictly log-concave.

(ii) 1−G (y) is strictly convex for y > 0 (for y ≥ 0 if n ≥ 3).

(iii) Let 1−G (y) and 1− Ĝ (y) be captive demand with n and n+1 firms. For y ≥ 0,

Ĝ (y) < G (y) and 1−Ĝ(y)
ĝ(y)

< 1−G(y)
g(y)

.

The key difference between Examples 1 and 2 is the correlation pattern of con-

sumer tastes across products. In Example 1, consumer tastes for the two products

exhibit perfect negative correlation, while in Example 2 tastes are uncorrelated. While

our model may be applied to arbitrary distributions of consumer tastes, these two

cases encompass many of the settings that are commonly used in the literature.

Given the symmetric setup, we focus on symmetric equilibria in which all firms

set the same list price pl.15 We begin with the targeted advertising sub-game.

3 Stage 2: Competition in Targeted Discounts

In order to identify the incentive to deviate from a symmetric list price in Stage 1,

suppose that all firms besides Firm 1 have set the same list price p. (The extension to

arbitrary list prices, as well as proofs for this section, are in the Appendix.) We will

focus on Firm 1’s profit from targeted discounting to a consumer with tastes satisfying

r2 > r3 > ... > rn.16 Then Firm 1’s value advantage is y1 = r1 − r2, the consumer is

on Firm 1’s turf if y1 > 0, and Firm 2 makes the most attractive rival product. In

Stage 2 competition for this consumer, each firm j chooses a probability aj of sending

her an ad (at cost A) and, if an ad is sent, a distribution over the discount price pdj
offered. The consumer is said to be contested if at least two firms advertise to her

with positive probability, or conceded if only one firm does; otherwise she is captive

to her default firm.

As a leading case, suppose that both p and pl1 exceed the ad cost; this means that

paying A to send a targeted discount is potentially profitable for any firm. Proposition

5 in the Appendix shows the following results about equilibrium discount competition

15Under duopoly there are no asymmetric equilibria. This may be true for n > 2 as well, but we
have not proved it.
16For smooth taste distributions, consumers who are indifferent between two or more products

have zero-measure, and have no impact on profits or list price decisions, so we can ignore them.
Relabeling firms so that Firm 2 is the closest rival for the consumer is a matter of convenience.
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for the consumer described above: (i) if y1 > pl1 − A, she is captive to Firm 1, who

earns its list price on her; (ii) if y1 ∈
(
0, pl1 − A

)
, she is contested by her two most-

favored firms, with expected profit π1 = y1 for Firm 1 and π2 = 0 for Firm 2; (iii)

if y1 < 0, Firm 1 earns zero profit on this consumer.17 While we focus on Firm 1’s

profits, similar logic applies to any other firm.

Let us trace some of the logic. In case (i), the consumer’s preference for Firm 1

is strong enough that the closest competitor would need to advertise an unprofitably

low discount pd2 < A to attract her away from Firm 1’s list price (which it will not

do). In case (ii), Bertrand-like profits ensue, even though the equilibrium discounting

strategies are mixed. Discount competition will drive other firms’ profits on this

consumer to zero (Lemmas 2 and 3), implying that Firm 1’s lowest advertised price

will be pd1 = A + y1, leaving no room for its closest rival to profitably undercut. As

this offer leaves Firm 1 with net profit y1 on the consumer, any other discount offers it

mixes over must do equally well. In case (iii), some other firm has the value advantage

over the consumer, and Firm 1’s profit is driven to zero by competition.

On the other hand, if all list prices are equal to or smaller than A, then no firm

will pay to send a discount ad, and Firm 1 will earn its usual oligopoly profit: it sells

at its list price to only those consumers y1 > pl1−p whose relative preference for Firm
1 exceeds any list price difference. The Appendix covers discount competition when

the Stage 1 list prices permit Firm 1 to advertise but not other firms (pl1 > A ≥ p), or

vice versa. These cases provide a firm’s off-the-path profits, which we note here and

will use in Section 4. Firm 1 earns its list price on captive consumers y1 > pL1 − P−1,

where P−1 = min (p,A). If p1 ≤ A, these are its only customers; otherwise it earns

π1 = y1 +P−1−A on consumers y1 ∈
(
A− P−1, p

l
1 − P−1

)
and zero on everyone else.

If p > A, then rival firms can potentially send discount offers as low as A, in which

case Firm 1’s profits collapse to the case discussed above; otherwise rival firms cannot

afford to advertise discounts, and Firm 1’s profits are constrained by their list price

p. For this reason, we refer to P−1 as Firm 1’s most competitive rival price.

Competition for a contested consumer: equilibrium discounting strategies
Consumers’gains from discounting will depend on the equilibrium mixed strate-

gies that underpin the profits discussed above. We discuss those strategies below,

restricting attention to when all firms have set the same list price p > A. As noted

17The boundary cases y1 = 0 and y1 = pl1 − A are omitted for smoother exposition; as they are
zero-measure, they do not affect the Stage 1 profits.
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in point (ii) above, a consumer with value advantage y1 ∈ (0, p− A) will be con-

tested by her favorite and second-favorite firms only, Firms 1 and 2. Because their

competition drives Firm 2’s profit to zero, no less-preferred firm could break even

if it were to target this consumer (Lemma 4). As a consequence of the positive ad

cost in combination with Bertrand undercutting incentives, Firm 1 and 2’s targeting

strategies must be mixed. We write B1 (s) and B2 (s) for the firms’mixed strategy

distributions over discount surplus offers, where the surplus offered to the consumer

is related to the discount price by s1 = r1 − pd1 and s2 = r2 − pd2. We also make the
convention that ‘not advertising’may be regarded as a surplus offer sl1 = r1 − p or
sl2 = r2 − p at a firm’s list price, so the probabilities of sending a targeted ad are

a1 = 1− B1

(
sl1
)
and a2 = 1− B2

(
sl2
)
respectively. This consumer will buy at Firm

1’s list price and enjoy surplus sl1 if she receives no discount, so ‘advertised’surplus

offers will need to offer her an improvement. Thus advertised offers satisfy s1 > sl1 for

Firm 1 and s2 ≥ sl1 for Firm 2 (recalling the assumption that ties go to the discount

offer). Proposition 6 in the Appendix derives the following equilibrium strategies for

Firms 1 and 2 with respect to this contested consumer.

Firm 1 Firm 1 sends no ad with probability 1− a1 = B1

(
sl1
)

= A
p−y1 . Its advertised

offers are distributed B1 (s) = A
r2−s over support (sl1, r2−A]. The corresponding

discount prices pd1 have support on [A+ y, p).

Firm 2 Firm 2 sends no ad with probability 1 − a2 = B2

(
sl2
)

= y1
p
. Otherwise,

its advertised offers are distributed B2 (s) = A+y1
r2+y1−s over support

[
sl1, r2 − A

]
;

this includes an atom A
p
of advertised offers at Firm 1’s list price surplus. The

corresponding discount prices pd2 have support on [A, p− y].

These distributions are dictated by indifference conditions and the firms’equi-

librium profits. In particular, the atom of offers undercutting Firm 1’s list price is

just large enough to provoke a response —if it were smaller, Firm 1 would not find

it worthwhile to pay A to advertise small discounts. If ad costs vanish (A → 0),

Firm 1’s price collapses to the pure strategy that is conventionally assumed for the

stronger firm in asymmetric Bertrand competition: it advertises the highest discount

price pd1 = y1 that its rival cannot undercut, corresponding to a surplus offer r2. Firm

2’s strategy remains mixed in this limit: B2 (s) = y1
r2+y1−s . While its discount offers

never win the consumer, they exert just enough competitive discipline to restrain

Firm 1 from pricing higher.
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Because a consumer takes the best surplus she is offered, a contested consumer’s

equilibrium surplus is a draw from the distribution B1 (s)B2 (s). We will calculate

her expected consumer surplus and use it to evaluate policies in Section 5.

4 Stage 1: Competition in List Prices

No-targeting benchmark If targeted advertising is impossible or banned, the model

collapses to standard differentiated-product price competition, and there is a symmet-

ric equilibrium at common list price pNT characterized by the first-order condition:18

pNT =
1−G (0)

g (0)
. (2)

This remains the model’s unique symmetric equilibrium outcome if targeted ads are

available but prohibitively expensive: A ≥ pNT .

From now on, we focus on the case A < pNT where targeting will be used in

equilibrium. With an eye toward symmetric equilibrium conditions, we begin with

Firm 1’s overall profit at list price pl1 when Firms 2 through n are expected to price

at pl. Using the results of the previous section, that profit may be written:

Π1

(
pl1, p

l
)

=

{
pl1
(
1−G

(
pl1 − P−1

))
if pl1 ≤ A;

pl1
(
1−G

(
pl1 − P−1

))
+
∫ pl1−P−1
A−P−1 (y + P−1 − A) dG (y) if pl1 > A.

(3)

Using P1 = min
(
pl1, A

)
for Firm 1’s own most competitive price, the two piecewise

expressions may be consolidated to write Firm 1’s marginal profit, and its first-order

condition for an interior optimum, as:

∂Π1

(
pl1
)

∂pl1
= 1−G

(
pl1 − P−1

)
− P1g

(
pl1 − P−1

)
= 0. (4)

This resembles the usual marginal-inframarginal tradeoffone would see in an oligopoly

first-order condition. However, the marginal consumer, y = pl1−P−1 is determined by

the most competitive price a rival could offer, which could be as low as an advertised

discount price of A. Furthermore, if Firm 1 can discount, it does not lose this marginal

consumer entirely when it hikes its list price. It sacrifices only P1 = A, the cost of

18Condition 1 ensures quasiconcave profit functions, so (2) is suffi cient as well as necessary.
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winning this consumer back with an infinitessimal discount.19

A symmetric equilibrium must satisfy (4) at pl1 = pl. The common list price must

exceed A, so P1 = P−1 = A, and the necessary condition for equilibrium simplifies

to:20
1−G

(
pl − A

)
g (pl − A)

= A. (5)

So long as A > m = limy→ȳ
1−G(y)
g(y)

, equation (5) has a unique solution which

we denote pT . In the Appendix, we show that (2) and (5) fully characterize the

symmetric equilibria of the model.

Existence and uniqueness of symmetric equilibria Under Conditions 1 and 2,
the model has a unique symmetric equilibrium. If A ≥ pNT , the list price is pNT

and targeting is not employed. If A ∈
(
m, pNT

)
, the list price is pT . If A < m,

the list price is pl = ȳ + A.

5 The Impacts of Targeting

The question of who gains or loses from targeted discounting is closely tied to the

impact of discounting on list prices. We will show that list prices, in turn, are linked

to the curvature of demand. In what we argue is the more compelling case of convex

captive demand, targeting pushes list prices up, eroding some of the consumer benefits

of discounting.

5.1 List Prices

We say that captive demand is convex or concave if 1 − G (y) is convex or concave

over the range of consumer types y > 0 who favor a firm’s product. Lemma 1 showed

that captive demand derived from independent taste shocks will be strictly convex, so

this is the relevant case for commonly used empirical specifications like multinomial

logit demand. Furthermore, a convex demand function has a decreasing density,

19In equilibrium, Firm 2 advertises to these marginal consumers just often enough (a2 = A/pl1)
that Firm 1 is indifferent about advertising to retain them. Not advertising means losing its full list
price on a fraction a2 of them, thus a total expected loss of a2p

l
1 = A, matching what it would lose

by advertising an infinitessimal discount. We thank a referee for suggesting this clarification.
20Having assumed A < pNT , an equilibrium at pl ≤ A is impossible because the equilibrium

condition ∂Π1

(
pl1
)
/∂pl1

∣∣
pl1=pl

= 0 would reduce to (2).
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g′ (y) < 0, so a firm will tend have more consumers who prefer its product by a little

bit than those who prefer it by a lot. This seems reasonable, except where there are

persuasive arguments for strongly polarized tastes. For these reasons, we will usually

treat convex demand as a leading case in the rest of the paper.

Equation (5) implicitly identifies a relationship pl (A) between the equilibrium

list price and the targeting cost. Suppose that A ∈
(
m, pNT

)
so that targeting is

affordable and there is an interior symmetric equilibrium with list price pT = pl (A).

Proposition 1 If captive demand is strictly convex, then pT > pNT , so list prices

are higher when targeting is in use than they would be if it were banned. If captive

demand is strictly concave, this reverses: pT < pNT .

Given Lemma 1, it follows immediately that targeted discounting pushes up list

prices (relative to no targeting) for any independent taste shock, multinomial choice

demand system of the sort described in Example 2. The proof uses the related result

that pl (A) is decreasing if demand is convex: more costly targeting leads to lower list

prices. The ranking follows because the list price tends to pNT as targeting becomes

too costly to use (A→ pNT ). If demand is concave, then pl (A) is decreasing, and the

argument reverses.

To trace out why demand curvature plays this critical role, consider the effect of

the ad cost on a firm’s marginal profit (4), written M1 = ∂Π1/∂p
l
1 here for brevity.

When ads are in use, an increase in A affects marginal profit through two channels:

∂M1/∂A = ∂M1/∂P1 + ∂M1/∂P−1. The first term, ∂M1/∂P1 = −g
(
pl1 − P−1

)
,

encourages Firm 1 to cut its list price so as to keep marginal consumers captive

(rather than pay the higher cost of advertising to them). But a higher targeting

cost also tends to put those marginal consumers out of the range of other firms’

discounts; this has a positive effect ∂M1/∂P−1 = g
(
pl1 − P−1

)
+ P1g

′ (pl1 − P−1

)
on

Firm 1’s marginal profit and encourages setting a higher list price.21 Convex demand

(g′ < 0) works counter to this competition-softening effect, allowing the first effect to

dominate. Loosely, this is because the decline in pl1 − P−1 pushes the margin into a

region of higher consumer density, and hence fiercer price competition.

List price neutrality under Hotelling competition The competing effects dis-

cussed above will cancel each other out if g′ = 0. To illustrate the implications,

suppose transportation costs are linear-quadratic in the Hotelling model of Example

21This term is unambiguously positive because it equals −Π′′1
(
pl1
)
.
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1: T (d) = αd+βd2, with α+β = t. Then captive demand is linear 1−G (y) = 1
2
− y

2t
,

and so we have list price neutrality: pNT = pl (A) = t for all ad costs A ≤ t. It turns

out that linear and quadratic costs are both knife-edge cases; for the family of trans-

port costs T (d) = dγ, one can confirm that captive demand is strictly convex for

γ ∈ (0, 1) or γ > 2, but strictly concave for γ ∈ (1, 2).22

When list price neutrality obtains in the Hotelling model, it is because large taste

differences are exactly as common as smaller ones (g′ (y) = 0), and this is possible

because tastes for the two products are negatively correlated. In contrast, taking the

difference of independent draws in the i.i.d. case has a centralizing effect that implies

higher densities of consumers at smaller taste differences.

While the role of the number of firms is not a main focus of the paper, we also

note that under standard oligopoly competition the equilibium price pNT falls with

n for the independent taste shock model. This intuitive feature is preserved when

there are targeted discounts: holding other parameters constant, the equilibrium list

price pl (A) declines with n, and consumers receiving discounts are better off for the

twin reasons that their surplus under discounting is larger with the lower list price

and their second best option is stochastically better with more choice.23 These pro-

competitive results might help allay misgivings about the mixed strategies in our

model since Varian’s (1980) model of sales has been criticized for its property that

prices rise with more competition.

5.2 Impact of Targeting on Profits and Consumer Surplus

We now examine the impact on firms and consumers when improvements in data

gathering and analysis make targeted discounting viable. The benchmark is a stan-

dard oligopoly equilibrium with no targeting and common list price pNT . We compare

this to a scenario where targeting costs have fallen to A < pNT , and there is a new

equilibrium with targeted discounting at common list price pT = pl (A). Unless oth-

erwise stated, we continue to assume that Condition 1 holds (strict logconcavity of

captive demand). Let ΠNT and ΠT be a firm’s profit in the two scenarios, with CSNT

and CST the respective aggregate consumer surpluses.

22More generally, captive demand has the same curvature on y ≥ 0 as the difference in transporta-
tion costs T (1− x)−T (x) does on x ∈

[
0, 1

2

]
; this cannot be reduced (at least, not in a trivial way)

to a condition on T (d) itself.
23Both claims follow from Lemma 1.iii, respectively applying pNT = (1−G (0)) /g (0) and pl (A) =

y∗ +A with (1−G (y∗)) /g (y∗) ≡ A.
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Our result for consumer surplus relies on a measure of how convex demand is:

we say that captive demand is ρ-convex, for ρ > 0, if (1−G (y))ρ is convex for

y ≥ 0. Note that ρ closer to zero corresponds to a higher degree of convexity; in

the limit as ρ goes to zero, captive demand approaches an exponential distribution,

which is the boundary case between logconcavity and logconvexity. The ρ-convexity

of many commonly-used demand systems can be readily verified. For example, in

the independent taste shock formulation of Example 2, captive demand is 1
n
-convex

if taste shocks are uniform, or 1
n−1
-convex if they are Type 1 extreme value (the

multinomial logit case), where n is the number of firms.24

Proposition 2 Targeting reduces profits: ΠT < ΠNT . If captive demand is ρ-convex

with ρ < A/pNT , then targeting also reduces consumer surplus: CST < CSNT .

Thus, if demand is suffi ciently convex, the introduction of targeted discounting

hurts both sides of the market. We flesh out the logic behind these results below.

5.2.1 Profits

In the no-targeting benchmark, each firm serves the 1− G (0) fraction of consumers

who are on its turf and earns profit ΠNT = pNT (1−G (0)). Meanwhile, from (3) we

have the following equilibrium profit for a firm in the scenario with targeting:

ΠT = pT
(
1−G

(
pT − A

))
+

∫ pT−A

0

y dG (y) . (6)

A firm earns positive profits only on the consumers who like its product best;

those with the strongest preference (y > pT − A) pay the list price, and the firm

earns its value advantage on the rest. If A < m, the equilibrium has all consumers

contested with targeted discounts; in this case, the first term vanishes, and we have

ΠT =
∫ ȳ

0
y dG (y).

For concave demand, the profit ranking is not surprising, since targeting implies

lower list prices plus additional discounting. However, if demand is convex, then

firms enjoy higher margins on their list price sales when they can target. Propo-

sition 2 implies that these gains must be overshadowed by the loss in profit when

consumers who would have otherwise paid pNT become contested. To demonstrate

24These examples suggest the plausible but unproven conjecture that captive demand is generally
more convex when there are more firms in the market.
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the profit ranking, write the equilibrium profit under targeting as a function of the ad

cost: ΠT
(
pl (A) , A

)
. As targeting becomes uneconomic, A→ pNT , these equilibrium

targeting profits tend toward ΠNT ; that is, ΠT
(
pl (A) , A

)∣∣
A=pNT

= ΠNT . (This is

clear from inspection of (5) and (2).) Then the claim that ΠT < ΠNT follows because

ΠT
(
pl (A) , A

)
is strictly increasing in A: dΠT

(
pl (A) , A

)
/dA = Ag

(
pT − A

)
.25

For intuition about why profits are increasing in the ad cost, we turn back to the

profit expression (3) where the effects of Firm 1’s own ad cost, and its rivals’ad cost

(written as P−1), can be distinguished. When all firms face higher targeting costs, the

net profit y+P−1−A on a contested consumer does not change. The only remaining
effect boosts Firm 1’s profits: consumers at the pl1−P−1 margin shift from contested

to captive, since Firm 1’s rivals can no longer afford to target them.

If Condition 1 is violated, it is possible for firms to benefit from targeted discount-

ing; the DP provides examples and a general result. Without logconcave demand,

the average consumer preference for her favorite firm, E (y | y ≥ 0), may exceed the

usual oligopoly price pNT , assuming the latter exists.26 In this case, firms may be

better off setting very high (and irrelevant) list prices, and selling to all consumers

through personalized price offers.

5.2.2 Consumer Surplus

It is straightforward to see that consumers benefit from targeted discounting if captive

demand is concave, as they face both lower list prices and the possibility of a discount.

In the convex demand case that is our main focus, targeting benefits the consumers

getting the steepest discounts but hurts those who pay list prices. To take the balance

of these two effects, we must investigate how large discounts are on average.

Consider an equilibrium at common list price pT and a contested consumer type

y1 ≥ 0 whose most-preferred products are at Firms 1 and 2. As shown in Section 3, her

best offer at each firm can be represented as a surplus draw s1 ∼ B1 (s) or s2 ∼ B2 (s),

and she takes the better of these two offers. To focus on how much she gains relative

to the surplus sl1 = r1 − pT from purchasing at Firm 1’s list price, we introduce the

“surplus improvement”variables s̃1 = s1 − sl1 and s̃2 = s2 − sl1. Making the change
of variables, these surplus improvement offers are distributed according to B̃1 (s̃) =

25Because the equilibrium price pl (A) is defined by a first-order condition, a version of the Envelope
Theorem applies, and we have dΠT /dA = ∂ΠT /∂A.
26Without logconcave demand, a well-behaved oligopoly equilibrium is not guaranteed.
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A
pT−y1−s̃ and B̃2 (s̃) = A+y1

pT−s̃ , with common support on [0, p− y1 − A]. We define this

consumer’s expected discount ∆
(
y1, p

T
)
to be her expected surplus improvement

relative to a list price purchase at her most-preferred firm; thus∆
(
y1, p

T
)
≡ EB̃max (s̃),

where B̃max (s̃) = B̃1 (s̃) B̃2 (s̃) is the distribution of her best improvement offer. After

computing this expectation, we have:27

∆
(
y1, p

T
)

= pT − y1 − L
(
y1, p

T , A
)
, where (7)

L (y, p, A) = A

(
1 +

(A+ y)

y
ln

(
A+ y

A

p− y
p

))
. (8)

Recall that Firm 1 earns p − y1 less on this consumer than it would if she were

captive, matching the first term in the discount. The consumer does not capture this

full profit reduction because she bears the cost L
(
y1, p

T , A
)
of the ineffi ciencies that

targeting introduces; these include expected ad costs and the fact that she sometimes

ends up with her second-best product. It can be shown that ∆y < 0, so as one would

expect, the consumers who are most flexible about which product to buy get the

largest discounts. Furthermore, ∆p ∈ [0, 1), so higher list prices imply larger —but

not commensurately larger —discounts.

Then in an equilibrium with targeting, a consumer with value advantage y enjoys

total surplus equivalent to paying EP (y) for her favorite product, where EP (y) = pT

if she is captive or EP (y) = pT − ∆
(
y, pT

)
if she is contested. Because the same

consumer pays pNT for her favorite product if targeting is banned, she is worse offwith

targeting if EP (y) > pNT . We refer to EP (y) as her expected ‘favorite-equivalent’

price, since it accounts for the fact that a discount price pd2 at her second-best firm is

surplus-equivalent to a price pd1 = pd2 + y at her favorite firm. Given the symmetry of

demand across firms, aggregate consumer surplus is lower with targeting than without

it if the average favorite-equivalent price Ey≥0 (EP (y)) exceeds pNT .

The consumer surplus ranking in Proposition 2 reflects two ways in which the

targeting equilibrium looks relatively worse for consumers when captive demand is

more convex. First, targeting inflates list prices more (that is, the gap pT − pNT is
larger) the more convex demand is —this makes the targeting case even less attractive

to captive consumers. Second, the average value advantage, E (y | y ≥ 0), grows

27After integrating by parts to get ∆ (y1, p) =
∫ p−y1−A

0

(
1− B̃max (s̃)

)
ds̃, this is a straightforward

computation.

19



larger when demand is more convex —there are more consumers with relatively strong

preferences for their favorite product. Since these are the consumers with the least to

gain from discounting, this effect reduces the total gains from targeting that accrue

to contested consumers.

The suffi cient condition ρ < A/pNT reflects the fact that targeting costs are passed

through to consumers, so targeting can be proven to hurt consumers for a broader

range of demand systems when A is larger. However, it is a stronger than necessary

condition, as demonstrated by the multinomial logit captive demand from Example

2. For this demand, banning targeting would improve consumer surplus as long as

the targeting equilibrium involves some captive consumers who pay list prices. This

is true for any number of firms and without any condition on A/pNT .28

Proposition 2 concerns aggregate consumer surplus, but under a mild convexity

condition (g′ (0) < 0) it can be shown that every consumer is made worse off by

targeting when the ad cost is suffi ciently high. Details are in the Appendix, but the

logic is that targeting induces a first-order increase in the list price but only a second-

order increase in discounts when pNT − A is suffi ciently small. Thus, even the most
fiercely contested consumers will pay more on average.

6 Opt-in and consumer privacy

In reaction to concerns about the ubiquity of consumer data, its use in targeting, and

the loss of privacy this entails, regulators have begun to consider policies to protect

consumers. Most prominently, the General Data Protection Regulation (GDPR),

which took force in the European Union in 2018, gives individuals the right to consent

(or not) to the processing of their personal data. Inspired by the GDPR, we use our

model to evaluate a policy under which a consumer cannot be targeted unless she

opts in. We assume rational consumers with a taste for privacy that they trade off

28Let 1 − G (y) = 1
1+(n−1)ey/β

. It may be confirmed that the no-targeting equilibrium list price

is pNT = n
n−1β and that for A ∈

(
β, pNT

)
the targeting model has an interior equilibrium with

y∗ = β ln
(

β
A−β

1
n−1

)
and list price pT = y∗ + A. Follow the proof of Proposition 2 to establish

EP
NT

= pNT = n
n−1β and EP

T ≥ 1
1−G(0)

∫ y∗
0

1 − G (y) dy + A = nβ ln
(
pNT

A

)
+ A, where the

last step follows by direct computation. Then we have EP
T − EPNT ≥ φ

(
pNT

)
− φ (A), where

φ (x) := nβ lnx − x. The function φ (x) is strictly increasing on (0, nβ), so φ
(
pNT

)
> φ (A), and

therefore EP
T
> EP

NT
.
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against the expected benefits from targeted discounts. This opt-in policy will be

compared to the benchmarks of unrestricted, laissez-faire targeting and an outright

ban on targeting (the T and NT cases from earlier). We prioritize the unrestricted

targeting benchmark because consumer data use has already become widespread and

there would be practical challenges with implementing a ban.29

We now assume each consumer chooses whether to opt into or out of data collec-

tion. A consumer who opts in suffers a lost-privacy cost c ≥ 0 and can be targeted by

any firm with a personalized discount. If she opts out, she suffers no privacy cost, can-

not be targeted, and therefore will purchase at her best list price offer. Privacy costs

are distributed across consumers according to cdf H (c), independently of preferences

over products.

A consumer opts in or out at the same time that firms set list prices, and before

learning her preferences over products. This assumption reflects the idea that most

people do not have a specific product or market in mind when they make decisions

about privacy; rather, they have a more diffuse sense that their data could be used

for or against them in some yet-to-be-determined future purchases. In the model, a

consumer will weigh her privacy cost against the average targeted discount over all

“locations” y. One interpretation is that she does not yet know which market her

data will be used in; hence she does not know whether her relative preference for her

top product will be strong or weak. An alternative interpretation is that she expects

her data to be used in many different product markets, some where her y is small and

others where it is large, and so she forms an expected benefit from discounts over all

these markets.

Price competition among firms proceeds as described earlier, with two amend-

ments. At Stage 2, only opt-ins may be sent a personalized discount, and firms set

list prices in Stage 1 based on an expectation about the fraction of consumers λ who

will opt in.

An equilibrium of the model with opt-in will require that (1) each firm sets a profit-

maximizing list price with respect to correct beliefs about other firms’list prices and

correct beliefs about λ, and (2) consumers opt in if and only if the expected discount

(based on correct beliefs about list prices) exceeds their privacy cost. As earlier, we

focus on equilibria that are symmetric in list prices; in this case (1) can be summarized

29For example, it could be diffi cult to prevent an individual from sharing data with a firm in cases
where it would be mutually beneficial.
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by a function p (λ) that gives the equilibrium list price generated when fraction λ of

consumers opt in. Meanwhile, (2) generates a correspondence λ (p) identifying the

fraction of consumers who opt in when a common list price p is expected. (The opt-in

rate is single-valued except at any prices where a mass of consumers are indifferent.)

Equilibria of the full model are intersections of these two curves. All claims in this

section are proved in the Appendix.

Consumer opt-in decisions
If consumers anticipate symmetric list prices, an opt-in will enjoy expected dis-

count ∆ (y; p) if she turns out to be contestable by her top two firms (y ∈ [0, p− A]).

If she turns out to be captive (y > p − A), she will get no discount; we extend the
definition of ∆ (y; p) to assign∆ (y; p) = 0 in this case. The ex ante expected discount

is then ∆̄ (p) = EG (∆ (y; p)), where the expectation is taken over locations y.

Consider price p and corresponding cost c = ∆̄ (p). Any consumer with cost c′ < c

strictly prefers to opt in, whereas anyone with c′ > c will opt out. As long as there

is not a mass of consumers at c, we simply have λ (p) = H
(
∆̄ (p)

)
. Consumers at

c′ = c are indifferent at price p; if there is a mass of such consumers, we assign

λ (p) =
[
H−, H

(
∆̄ (p)

)]
, where H− = limp′→p− H

(
∆̄ (p′)

)
. (An example where all

consumers share the same privacy cost is illustrated in Figure 1(b).) Because average

discounts rise with the list price, the opt-in rate λ (p) is increasing in p as well, strictly

so if the privacy cost distribution has full support.

Price competition equilibrium among firms (at a given opt-in rate)
To distinguish it from an equilibrium of the full model, we say a price competition

equilibrium (PCE) is a profile of list prices at which each firm maximizes its own

profit, given the opt-in rate λ. Then a symmetric equilibrium of the full model is

comprised of a symmetric PCE and an opt-in rate that are mutually consistent.

Without loss of generality, consider the marginal profit of Firm 1 when it expects

all other firms to charge list price p :

dΠ1

dp1

= λ (1−G (p1 − A)− Ag (p1 − A)) + (1− λ) (1−G (p1 − p)− p1g (p1 − p)) .
(9)

The expression is simply a weighted average of the targeting marginal profit on

opt-ins and the no-targeting marginal profit on opt-outs. A symmetric PCE, if one
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exists, must therefore satisfy the equilibrium condition:

Φ (p∗) := λ (1−G (p∗ − A)− Ag (p∗ − A)) + (1− λ) (1−G (0)− p∗g (0)) = 0 (10)

Of course this is just a weighted average of the equilibrium conditions for the cases of

unrestricted targeting and no-targeting, respectively. In order for (10) to be not just

necessary but suffi cient for a PCE, we need demand mixtures of opt-in and opt-out

consumers to be well-behaved. In the Appendix, we show the following:

If captive demand is either convex or concave, then for a given opt-in rate λ there is

a unique symmetric PCE, identified by Φ (p∗) = 0.

The unique symmetric PCE at each opt-in rate may be traced by a function p (λ).

We saw earlier that demand curvature dictates whether list prices are higher with

unrestricted targeting or no targeting, and this logic extends to opt-in. If captive

demand is strictly convex, then p (λ) is strictly increasing, from p (0) = pNT up to

p (1) = pT . This reverses if demand is strictly concave: p (0) = pNT > pT = p (1), and

p (λ) is strictly decreasing. Consumers impose spillovers on each other through the

effect of their privacy choices on list prices, but the direction of that spillover depends

on demand curvature: opting in hurts other consumers if demand is convex but helps

other consumers if demand is concave.

6.1 Equilibrium with consumer opt-in

Because we regard convex captive demand as a more empirically plausible case, that

will be where we focus most of our attention. Figure 1 illustrates equilibria of the full

model with opt-in. In Panel (a), privacy costs have full support on [0,∞). Consumers

with privacy costs close to zero will opt in if there is any chance of a discount. This

implies a vertical intercept λ (A) = 0, as shown (since targeting becomes unprofitable

for list prices below the ad cost). Meanwhile, the presence of consumers with arbi-

trarily large privacy costs ensures that even at high list prices the opt-in rate never

reaches one. The figure depicts a unique equilibrium at (λ∗, p∗). In Panel (b), all

consumers have the same privacy cost c > 0, so they shift in unison from opting out

to in as list prices rise above a threshold price p̄ (identified by c = ∆̄ (p̄)). Here there

are three equilibria: full opt-out, full opt-in, and an interior equilibrium.

Because the empirical literature is only beginning to address the challenge of
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Figure 1: Examples of opt-in equilibrium when captive demand is convex.

quantifying consumer tastes for privacy, we will focus on robust policy conclusions

that are not sensitive to the details of the distribution H (c). Notwithstanding the

substantial differences between the panels of Figure 1, there are common threads to

be found. A symmetric equilibrium always exists, and any symmetric equilibrium list

price must lie in the interval between pNT and pT .30 On this basis, we can evaluate

the impact of imposing an opt-in requirement on ex ante consumer surplus (after

learning one’s privacy cost, but before learning y) and firm profits.31

Proposition 3 Suppose some consumers opt out under policy OI. Then compared to
unrestricted targeting:

(i) The opt-in policy strictly improves profits if captive demand is either convex or

concave.

(ii) If captive demand is convex, the opt-in policy makes all consumers strictly better

off.

Proof. (Part (i) is proved in the Appendix.) A consumer’s expected payment

net of discounts, p − ∆̄ (p), is strictly increasing in in the list price p. With convex

demand, any equibrium with some consumers opting out (λ∗ < 1) must have p∗ ≤ pT .

Because of the lower list price, a consumer who opts in when she has the choice

to do so will enjoy a larger surplus than she would under unrestricted targeting:

30Existence follows immediately from an application of the Kakutani fixed-point theorem to the
mapping λ (p (λ)). Both existence and the bracketing of p∗ between pNT and pT are true whether
captive demand is convex or concave.
31Since this is the information consumers have when opting in or out, it is the appropriate stage

at which to evaluate consumer surplus.
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E (r1)− p∗+ ∆̄ (p∗)− c > E (r1)− pT + ∆̄
(
pT
)
− c. Any consumers opting out could

have chosen to opt in, so they must be better off as well.

In the convex demand case, consumers who wish to opt out benefit when they can

do so, and by exercising that right they induce more competitive list prices, benefiting

all consumers (including those who expect to receive a discount.) Meanwhile, firms

benefit because they no longer need to discount to consumers who opt out. The fact

that this gain outweighs the lower list price charged to all consumers is not obvious,

but it can be demonstrated by using the equilibrium condition (10) to eliminate the

opt-out rate 1− λ∗ from the comparison.

Consumers do not internalize the spillover effect on list prices when they opt out.

We next show that the spillover may be large enough that consumers would be better

off if opt-out were mandatory —that is to say, if targeting were banned.

Proposition 4 Suppose A > 0 and some consumers opt in under policy OI. Then:

(i) Banning targeting strictly improves profits (ΠNT > ΠOI).

(ii) There is some ρ̄ ∈ (0, 1) such that banning targeting strictly improves consumer

surplus (CSNT > CSOI) if captive demand is ρ̄-convex.

For consumers, the logic resembles that of Proposition 2. A targeting ban preserves

the privacy of those who would otherwise opt in and brings list prices down for those

who would otherwise opt out. For suffi ciently convex demand, the latter effect is

large enough on its own to compensate for the discounts that the opt-ins give up. For

firms, the reasoning is similar to the previous result. Note that both results apply for

any equilibrium under OI, regardless of the equilibrium opt-in rate λ∗, as long as it

is strictly positive. As with Proposition 3, this is achieved by using (10) to eliminate

λ∗ from the comparison of countervailing effects.

Other consumer-friendly policies
Because an outright ban on targeting might be impractical to implement, we will

mention a few possible ways to improve upon an opt-in policy. Because opt-in inflicts

a negative spillover on other consumers when demand is convex, standard arguments

show that consumer choice plus a Pigouvian tax on opt-in could improve aggregate

consumer surplus relative to consumer choice alone, assuming the tax proceeds could

be returned to consumers as a lump sum. In practice, implementing such a tax would

be unwieldy, of course. More realistically, regulators could impose a nuisance cost on

consumers choosing opt-in, perhaps by making opt-out the default and imposing a
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paperwork burden on those who opt in. If we write c (λ) = H−1 (λ) for the privacy

cost of the λth-percentile consumer, c′ (λ∗) gives a measure of how hard it is to nudge

the opt-in rate downward with a nuisance cost. If c′ (λ∗) is large, privacy costs drop

off quickly for inframarginal (λ < λ∗) opt-in consumers, so a relatively large nuisance

cost would be required to convince them to opt out; conversely, if c′ (λ∗) is small, a

small nuisance cost may reduce the opt-in rate substantially. In the Appendix we

show that a nuisance cost benefits all consumers if p′ (λ∗) > c′ (λ∗). This condition

ensures that the opt-in rate can be nudged downward with a nuisance cost smaller

than the resulting drop in prices; thus even consumers who continue to opt in (and

therefore bear the nuisance cost) benefit.

As seen in Panel (b) of Figure 1, the benefits from an opt-in policy may also be

hamstrung by coordination failure. With convex demand, multiple equilibria may

arise because consumers choices are self-reinforcing: higher opt-in rates induce higher

list prices, making opt-in and the prospect of discounts even more attractive. For

consumers, the equilibrium in the figure where everyone opts out Pareto dominates the

equilibrium where everyone opts in. However, if the status quo ante were unrestricted

targeting at list price pT , a new opt-in policy might fail unless accompanied by a

coordinated campaign to shift consumer expectations to the low-price equilibrium.

For example, policymakers might wish to emphasize the right to privacy so that low

opt-in becomes focal.

6.2 Caveats and extensions

Concave captive demand arises when consumers have relatively polarized tastes.

While we have discussed reasons to think that concave demand is not the norm,

Figure 2 gives an example where it arises naturally from two-firm Hotelling competi-

tion (with consumers clustered near the firms, at x = 0 and x = 1, as seen in Panel

(a)). Relative to unrestricted targeting, an opt-in policy clearly benefits firms when

demand is concave, as list prices will be higher and there will be fewer consumers to

discount to. However, the impact on consumers depends on whether the preserved

privacy of those who opt out outweighs the higher price level faced by everyone. The

example in Panel (b) shows a scenario where all consumers would be made strictly

better off if the right to opt out were rescinded!

To see why, notice that reverting to unrestricted targeting would bring list prices
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Figure 2: Concave demand: example where an opt-in policy makes all consumers
worse off. (See the Appendix for details.)

down from p∗ to pT —this benefits all consumers who are already opting in. But

because all consumers have the same privacy cost in this scenario — note the flat

λ (p) curve —the consumers who opt out in the (λ∗, p∗) equilibrium enjoy exactly the

same surplus as those who opt in, so by the same logic, they also gain if opting out is

forbidden. Homogeneous privacy tastes make the argument simple, but the conclusion

that all consumers benefit from banning opt-out is robust to some heterogeneity in

those tastes. While we do not suggest that consumers will typically be harmed by

having more autonomy over their own data, demand curvature may cause privacy

policies to have unexpected effects on prices.

In the Discussion Paper, we analyze the model when consumers make their privacy

choices after observing their own tastes y and the price level p. This timing might

make sense for sophisticated consumers making a major purchase. For example, after

getting high initial quotes on a new car, a consumer with flexible preferences might

wish to communicate her contestability by permitting her data to be collected on

automotive websites. Our main results carry through — under a slightly stronger

demand convexity condition, all consumers benefit from an opt-in policy relative to

unrestricted targeting.

7 Concluding Remarks

We have formalized an oligopoly model of targeting in which firms choose list prices

and then choose discounts targeted to individual consumer types. The novelty of the
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solution is that pricing resembles monopoly. Comparing equilibrium with targeting

to pure list-pricing, targeting hurts profits for log-concave demand (despite raising

list prices when demand is convex) because of subsequent discounting competition

for consumers. Thus targeting cannot be a practice facilitating higher profits unless

demand is log-convex (a case developed in the DP). Targeting also ends up hurting

consumers, despite them enjoying discounts, when demand is convex enough (though

they gain when demand is concave and list prices fall).

These strikes against targeting suggest at first blush that allowing consumers to

opt-in to being targeted might make firms and consumers better off, especially when

consumers face privacy costs from being targeted, on the grounds that consumers will

only opt-in and firms will only target them when they mutually benefit. However,

the latter argument is too simplistic. First, consumers opt in to all firms and do

not contract with them individually. Second, opting in exerts a negative pricing

externality on other consumers because list prices rise (when demand is convex).

Nonetheless, we are still able to show that opt-in raises profits regardless of demand

concavity/convexity shape — and moreover, all consumers benefit when demand is

convex. This result is a strong affi rmation of giving consumers the right to choose

whether to be targeted. However, due to the consumer externality just noted, too

many opt in. Hence a tax on opt-in improves consumer and firm welfare —and we

find the stronger result that the benefits of a tax may still prevail even if the proceeds

are wasted (think of a hassle cost to opting in).

Some of our results (such as the redistribution of consumer surplus from individu-

als with high values for their favorite product toward those with high values for their

second-best product) underpin patterns that arise quite consistently throughout the

literature on targeting. The impact of targeting on profits is a less settled question.

The prevailing view is probably that competitive price discrimination stiffens compe-

tition and leaves firms worse off, and this matches our main finding. Below we give

other reasons for targeting to be profitable that explain other results in the literature.

One (more speculative) potential explanation is imperfect targeting. In models like

ours, targeting induces head-to-head Bertrand competition for a contested consumer

— it is generally hard for this to be good for firms. In those papers where firms

benefit from targeting, the technology usually has some imperfection or limitation

that softens price competition over those targeted.32 Slightly imperfect targeting

32Often (Galeotti and Moraga-González (2008), Iyer et al. (2005), and Esteves and Resende
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would not change our conclusions.33

In practice, some firms may have collected proprietary information about con-

sumer tastes. One way to model asymmetrically informed firms in our setting is via

the targeting cost: suppose a better-informed firm can identify particular types of

consumer at lower cost. This is perhaps too reductive to be entirely satisfying, but

more sophisticated approaches appear rather challenging. To illustrate, consider the

rather natural case where a firm knows an individual consumer’s taste for its own

product, but not how that consumer values alternative products. Discount competi-

tion for such an individual then resembles an asymmetric independent private-values

auction (where the firms “bid”in surplus offers) with costly entry (the targeting cost)

and an endogenous outside option (the chance of making a list price sale without ad-

vertising if the consumer’s other options end up being suffi ciently weak). The latter

two features imply that a firm will refrain from targeting consumers with suffi ciently

low or suffi ciently high values for its product (in the first case because a discount is

unlikely to succeed, and in the latter because it is unlikely to be necessary). While

standard tools from auction theory could be brought to bear on this problem, both the

asymmetry and the endogenously top- and bottom-truncated supports of the bidding

distributions would pose technical hurdles.

While our approach is quite general in many respects, it is worth discussing our

simplifying assumptions and directions for extension.

Because we assume the market to be fully covered, a consumer’s next-best option

is always some rival firm rather than the outside option of not purchasing. This

permits us to treat next-best options symmetrically, which is particularly helpful in

keeping the n-firm case tractable. However it also implies that a discounting firm

always faces competition. If outside options were to bind, then targeting would also

have a market-expanding effect: each firm would be able to make monopoly price-

discriminating offers to some consumers who otherwise would not have purchased.

In this case, cheaper targeting would likely have a more positive impact on profits

(2016)) this is because firms cannot be sure which consumers within a targeted group will receive their
ads, so they price with a glimmer of hope at ex post monopoly power. Or, as in Chen et al. (2001)
ads sometimes reach the “wrong” consumers rather than those who were targeted. Alternatively,
convex advertising costs (Esteves and Resende, 2016) may prevent all-out competition.
33In related work (Anderson, Baik, and Larson, 2015), we explain on continuity grounds why com-

petition for contested consumers would continue to be fierce if firms’information about consumers
were a little bit noisy. Since this argument relies on equilibrium profit and not on the fine details of
the Stage 2 price competition game, the conclusion should extend as targeting noise increases.
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and welfare than our results suggest, perhaps at the expense of consumer surplus;

the implications for list prices seem likely to be the same. Thisse and Vives (1988)

find a result of this kind for the dominant firm when the asymmetry between firms is

suffi ciently large.34

While we have assumed that list prices precede discount offers, one might also

consider the case where all prices (list and discount) are set simultaneously. In our

setting, with list prices set first, there is a Stackelberg leader effect: by reducing its list

price, a firm can discourage its rivals from advertising to some consumers they would

have otherwise tried to poach. Since this effect is absent in the simultaneous version

of the model, one might expect equilibrium list prices to be higher. Unfortunately this

hypothesis is diffi cult to evaluate because the model with simultaneous price-setting

fails to have a pure-strategy equilibrium in list prices.35

While symmetry is convenient, our framework can be readily adapted to accom-

modate differences in advertising cost, production cost, or the consumer taste distrib-

ution across firms (although broad, tractable conclusions might be harder to obtain).

We have also not addressed the market in which firms acquire consumer data.36

Finally, our results in Section 6 can be read as a strong but conditional defense of

consumer opt-in requirements like those mandated by the GDPR. Under assumptions

about demand that are common in the empirical literature, mandating opt-in makes

all consumers better off. Because this conclusion can be overturned if consumers are

less agile about updating their privacy choices, it seems important to gather data

about how these privacy choices are made in practice. Furthermore, while a case can

be made for opting in as an all-or-nothing decision (as we have modeled it), it would

be helpful to understand how our conclusions hold up if consumers can choose which

personal information to release, and to which firms.
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A Appendix

Section 2 proofs
Proof of Lemma 1

Part (i) We appeal to known properties of log-concave distributions; see the ref-
erences for further information.37 Cumulative distribution functions and their com-

plements are strictly log-concave if their density functions are, so F (x) and F (x+ y)

are strictly log-concave. Products of strictly log-concave functions are strictly log-

concave, so f(1:n−1) (x) is strictly log-concave, as are the integrands F (x+ y) f(1:n−1) (x)

and (1− F (x+ y)) f(1:n−1) (x). Marginals of strictly log-concave functions are strictly

log-concave, so integrating over x, we have G (y) and 1 − G (y) strictly log-concave.

Similar arguments applies to g (y) =
∫
f (r + y) f(1:n−1) (r) dr.

Part (ii) We will prove that g′ (0) ≤ 0, with g′ (0) < 0 if n ≥ 3. The claim

follows because g′ (y) /g (y) is strictly decreasing by part (i).

We allow for the possibility that the upper limit of the support r̄ is either finite

or infinite. If the former, then for y ≥ 0, we have F (r + y) = 1 and (by convention),
dF (r+y)

dy
= f (r + y) = 0 wherever r + y ≥ r̄. Then we can write

g (y) =

∫ r̄−y

r

f (r + y) f(1:n−1) (r) dr for y ≥ 0

37For example, see Bergstrom and Bagnoli (2005).

34



where the upper limit collapses to ∞ if r̄ =∞. Differentiating once more,

g′ (y) =

∫ r̄−y

r

f ′ (r + y) f(1:n−1) (r) dr − f (r̄) f(1:n−1) (r̄ − y)

where the second term should be understood as limr→∞ f (r) f(1:n−1) (r − y) = 0 if

r̄ = ∞ (since limr→∞ f (r) = 0 if the distribution is unbounded). Our aim is to sign

g′ (0); using the definition of f(1:n−1) (r), we have

g′ (0)

n− 1
=

∫ r̄

r

f ′ (r) f (r)F (r)n−2 dr − f (r̄)2 F (r̄)n−2

But f ′ (r) f (r) = 1
2
d
(
f (r)2), so if n = 2 we have g′(0)

n−1
= −1

2

(
f (r̄)2 + f (r)2) ≤ 0.

Otherwise, integrate by parts to get

g′ (0)

n− 1
= −1

2

((
f (r̄)2 F (r̄)n−2 + f (r)2 F (r)n−2)+ (n− 2)

∫ r̄

r

f (r)3 F (r)n−3 dr

)
The first term inside the parentheses is weakly positive, and the second is strictly

positive, so g′ (0) < 0 as claimed.

Part (iii) As the published paper only uses this result in passing, we refer the

reader to our Discussion Paper for the proof.

Section 3 analysis and proofs (Targeting subgame in Stage 2)

As in the text, we consider Stage 2 competition for a consumer with tastes r1 >

r2 > ... > rn, with y1 = r1 − r2, given list prices pl1 and p
l
j 6=1 = p. For the purpose

of the paper, analyzing this “semi-symmetric”subgame (where all of Firm 1’s rivals

have set the same list price) will suffi ce, since our interest is in the incentive to deviate

from a symmetric list price profile. For completeness, the Discussion Paper gives an

analysis of the Stage 2 subgame for arbitrary profiles of list prices; aside from the

heavier notational burden, the logic is quite similar.

Define P1 = min
(
pl1, A

)
, P−1 = min (p,A), and y∗1 = pl1−P−1, and ŷ1 = P1−P−1.

It is useful to partition the possible values of y1 into three intervals: Region I is

y1 > y∗1, Region II is y1 ∈ (ŷ1, y
∗
1), and Region III is y1 < ŷ1. If Firm 1 cannot

advertise (pl1 ≤ A), then ŷ1 = y∗1, and so Region II vanishes. Proposition 5 is focused

on Firm 1’s equilibrium expected profit on this consumer. The proposition also gives

35



other results (on who advertises to the consumer and the profits of other firms) that

are used in the paper.

Proposition 5 (Firm 1’s Stage 2 equilibrium profit)

(I) A Region I consumer is captive to Firm 1, with profits π1 = pl1 and πj 6=1 = 0.

(II) Region II is non-empty if p > A, in which case profits on a Region II consumer

are π1 = y1 + P−1 − A and πj 6=1 = 0. In particular:

. a. If p ≤ A, Region II is
(
A− p, pl1 − p

)
, the consumer is conceded to Firm 1,

and π1 = y1 + p− A.
. b. If p > A, Region II is

(
0, pl1 − A

)
, the consumer is contested by Firms 1 and

2 only, and π1 = y1.

(III) On a Region III consumer, Firm 1 earns π1 = 0.

Proof. Part (I) If p ≤ A, then y∗1 = pl1−p. Then a consumer with y1 > y∗1 prefers

Firm 1’s list price over other list price offers, and no other firm can afford to advertise

a discount below its list price. If p > A, then a consumer type y1 > y∗1 = pl1−A would
require a discount offer pd2 ≤ pl1 − y1 < A to buy from Firm 2, but Firm 2 cannot

profitably advertise a price this low. A fortiori, no lower-ranked firm can profitably

target the consumer either.

Part (II.a) When y1 < y∗1, the consumer’s default is Firm 2, but Firm 1 can poach

her with an ‘undercutting’offer pd1 ≤ p+ y1. As no other firm can afford to discount,

it will target her with the minimal discount pd1 = p + y1 as long as the net profit

π1 = pd1 −A from doing so is positive. Thus it poaches her if y1 > A− p and refrains
from advertising if y1 < A− p.
Part (II.b) Proved in Lemmas 2-4 below.

Part (III) If P−1 = p, then ŷ1 = min
(
pl1, A

)
− p. Then for y1 < ŷ1, neither Firm

1’s list price nor its lowest conceivable discount price beats Firm 2’s list price. If

P−1 = A and P1 = pl1, then ŷ1 = pl1 − A, and Firm 1 cannot afford to advertise. A

consumer y1 < ŷ1 either prefers Firm 2’s list price (if y1 < pl1−p) or can be profitably
won by Firm 2 with some discount pd2 ≥ A. If P−1 = P1 = A, then all firms can afford

to discount, and ŷ1 = 0. Then for y1 < ŷ1 = 0, Firm 2 makes the consumer’s favorite

product, and π1 = 0 follows by applying Part (II) to the re-ordered ranking of firms.

Lemmas 2-4 establish Part II.b of the proposition. They presume that pl1 and

p strictly exceed A and that the consumer in question satisfies y1 ∈ (ŷ1, y
∗
1) =
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(
0, pl1 − A

)
.38

Lemma 2 Only the consumer’s favorite firm earns a positive profit on her: π1 ≥
y1 > 0 and πj>1 = 0.

Proof. Because any competitor’s discount will satisfy pdj ≥ A, Firm 1 can guar-

antee winning the consumer by advertising pd1 = A+y1−ε, for ε > 0, thereby earning

π1 = y1 − ε. Since π1 ≥ y1 − ε for all ε > 0, we have π1 ≥ y1 > 0. Suppose to-

ward a contradiction that π2 > 0. This implies that both Firms 1 and 2 must target

the consumer with probability one. (Of the two firms, the non-default firm strictly

prefers to advertise a discount, since it would earn zero otherwise. But in this case

the default firm will earn zero without discounting, so it strictly prefers to advertise

too.) But then standard results for Bertrand competition preclude an outcome where

both firms cover the ad cost A, contradicting the strict positivity of both profits. The

same argument rules out πj > 0 for any j > 2.

Lemma 3 Firm 1’s profit on the consumer is π1 = y1.

Proof. Let p
1
be the infimum over Firm 1’s support of discount offers to this

consumer. If π1 > y1, then p1
must satisfy p

1
> A + y1. But then Firm 2 could

earn a strictly positive profit with an undercutting discount pd2 = p
1
− y1 − ε > A,

contradicting Lemma 2.

Lemma 4 Only Firms 1 and 2 target the consumer with positive probability: a1 > 0,

a2 > 0, and aj>2 = 0.

Proof. If a lower-ranked firm j > 2 did advertise, it would need to earn a weakly

positive profit on its lowest advertised price p
j
. But then by advertising the consumer-

surplus-equivalent discount pd2 = p
j
+(r2 − rj), Firm 2 could win the consumer equally

often but at a higher price, thereby earning a strictly positive profit (and contradicting

Lemma 2). Next to establish a1 > 0, note that Firm 2 could earn a strictly positive

profit if Firm 1 never advertised (either as the consumer’s default or by sending the

38We omit arguments for the boundary cases y1 = 0 and y1 = y∗1 . For the former, arguments
similar to those here establish zero profits for all firms. For the latter, it can be shown there is a
range of equilibria (depending on how often Firm 2 advertises) yielding profits π1 ∈

[
y∗1 , p

l
1

]
for Firm

1. As profits on zero measure sets have no impact on Stage 1 incentives, neither case is critical to
the main results of the paper.
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undercutting offer pd2 = pl1 − y1 > A), contradicting Lemma 2. Similarly, if Firm 2

never advertised, then Firm 1 could earn the profit π1 = pl1 > y1 (if it is the default)

or π1 = p+ y1−A > y1 (by undercutting Firm 2’s list price). Either case contradicts

Lemma 3, establishing a2 > 0.

Proposition 6 below derives the discounting strategies for a contested consumer

that appear in the text. It is assumed that list prices are symmetric and exceed the

ad cost. We consider a consumer y1 ∈ (0, y∗1) = (0, p− A) who (by Prop [above]) is

contested by Firms 1 and 2 only.

Proposition 6 Equilibrium discounting strategies with respect to a contested con-

sumer are as described in the text.

Proof. Advertised surplus offers have supports (sl1, r2 − A] and
[
sl1, r2 − A

]
. Let

s̄j (sj) be Firm j’s supremum (infimum) over advertised offers. The suprema satisfy

s̄1 = s̄2 = r2 − A. (Firm 2 cannot profitably offer s2 > r2 − A, and so Firm 1 need

not offer s1 > r2 − A either. And if either supremum were strictly below r2 − A,

the other firm could strictly exceed its equilibrium payoff by ‘overcutting’slightly,

contradicting Lemmas 2 and 3.) Firm 1 will not make a discount offer s1 < s2 that

wins only if Firm 2 does not advertise; it will win just as often (and save A) by not

discounting. So s1 ≥ s2. Next we have s2 = sl1: since Firm 2’s lowest advertised

surplus offer wins only against Firm 1’s list price, it should do so by no more than

necessary. Finally, we cannot have s1 > s2, since Firm 2 would have no incentive to

make offers in the gap (s2, s1), but then Firm 1 could reduce its lowest offer without

winning less often. So s1 = sl1 as well. The arguments against gaps and atoms on

(sl1, r2−A] are standard. We defer showing that Firm 2 makes an atom of advertised

offers at s2 = sl1 until the next step.

Mixed strategies over s ∈ (sl1, r2 − A] are given by B1 (s) and B2 (s). Firm 1’s net

expected profit from advertising surplus s is π1 (s) = B2 (s) (r1 − s) − A. Then use
r1 = r2+y1 and the indifference condition π1 (s) = y1 to obtain B2 (s). Similarly, Firm

2’s expected profit is π2 (s) = B1 (s) (r2 − s)−A; the indifference condition π2 (s) = 0

delivers B1 (s). Then B1

(
sl1
)

= A
p−y1 = 1− a1 > 0 delivers the probability that Firm

1 sends no ad. In this case, Firm 1 wins only if Firm 2 does not advertise; hence

π1 = (1− a2) p = y1 (where the last equality follows by indifference). We conclude

B2

(
sl2
)

= 1− a2 = y1/p. It is established that Firm 2 makes no advertised offers on

s ∈
(
sl2, s

l
1

)
, and we also have B2

(
sl1
)

= lims↘sl1 B2 (s) = (A+ y1) /p. The difference,
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B2

(
sl1
)
−B2

(
sl2
)

= A/p, must be an atom of offers at s2 = sl1, undercutting Firm 1’s

list price.

Section 4 analysis and proofs (List prices in Stage 1)

Characterization of a unique symmetric equilibrium in list prices
Suppose that A < pNT . (The case of A ≥ pNT is covered in the text.) Firm

1’s first-order condition (4) is equivalent to
1−G(pl1−P−1)
g(pl1−P−1)

− P1 = 0. Define a function

Θ (p) equal to the left-hand side of this expression, evaluated at the strategy profile

in which all list prices are equal to p:

Θ (p) =
1−G (p−min (p,A))

g (p−min (p,A))
−min (p,A) =

{
1−G(0)
g(0)

− p if p ≤ A;
1−G(p−A)
g(p−A)

− A if p > A.

Note Θ (A) = pNT−A > 0. Furthermore, Θ (p) is strictly decreasing (as monotonicity

of 1−G(y)
g(y)

follows from Condition 1) and tends toward m − A as p − A → ȳ (where

m = 1−G(ȳ)
g(ȳ)

).39 Thus if A > m, then Θ (p) = 0 has a unique solution for some

p ∈ (A, ȳ + A). Alternatively, if A < m, then Θ (p) is strictly positive at any price

level such that p− A < ȳ.

Proposition 7 Under Condition 1, there is a unique symmetric equilibrium. This is
the unique equilibrium of the game if there are two firms. If A ≥ pNT , the common

list price is pNT and targeted discounts are not used. If A ∈
(
m, pNT

)
, the list price

solves Θ
(
pl
)

= 0, targeting is used, and all non-captive consumers are contested by

their top two firms. If A < m, then pl = ȳ+A, and all but the most captive consumers

are contested with targeting by their top two firms.

Proof of Proposition 7
Suppose A > m. Let p∗ be the unique solution to Θ (p) = 0; as noted above,

this solution must satisfy p∗ > A, so the second part of the piecewise definition of

Θ (p) applies, and p∗ must solve (5). By construction, setting plj = p∗ solves Firm j’s

first-order condition (4) when all other firms charge p∗. Furthermore, marginal profit

∂Πj

(
plj
)
/∂plj is strictly positive for p

l
j < p∗ and strictly negative for plj > p∗ (using

39If ȳ = ∞, define m = limy→∞
1−G(y)
g(y) < ∞. (The limit exists by monotone convergence.)

Typical demand distributions satisfying Condition 1 will be suffi ciently thin-tailed to have m = 0.
However, if the tails of captive demand look exponential (as in the Type 1 extreme value case of
Example 2), then m will be positive but finite.
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strict logconcavity of 1 − G (y) and the fact that Pj is weakly increasing in plj), so

setting plj = p∗ uniquely maximizes Firm j’s profit. This establishes the symmetric

equilibrium at p∗. The features of equilibrium follow from arguments in the text.

If A < m, there is no symmetric equilibrium at any list price satisfying pl−A < ȳ,

since Θ
(
pl
)
strictly positive implies that each firm has a strictly positive marginal

profit and would gain by deviating to a higher list price. At pl = ȳ+A, all consumers

with value advantage y < ȳ are contested, and consumers with the largest possible

taste advantage ȳ are on the captive contested border. As the latter are zero-measure,

each firm’s profit is Π =
∫ ȳ

0
ydG (y). Deviating to a lower list price plj < pl is ruled

out by Θ
(
pl
)
strictly positive. Deviating to a higher list price ensures that consumers

at the upper bound ȳ will be contested for sure, and does not change profits on other

consumers; as the former are zero-measure, this cannot be a strict improvement.

For uniqueness with two firms, suppose toward a contradiction that there exists

an equilibrium with list prices pl1 < pl2 ≤ ȳ+A, so Firm 1’s first-order condition must

be satisfied, and Firm 2’s marginal profit must be weakly positive. Define a function

υ (u, v) by

υ (x, y) =
1−G (u−min (v, A))

g (u−min (v,A))
−min (u,A)

so the first-order conditions imply υ
(
pl1, p

l
2

)
= 0 and υ

(
pl2, p

l
1

)
≥ 0. But υ (u, v) is

strictly decreasing in u and weakly increasing in v (by strict log-concavity of 1 −
G (y)). So if pl1 < pl2, we have υ

(
pl1, p

l
2

)
> υ

(
pl2, p

l
2

)
≥ υ

(
pl2, p

l
1

)
≥ 0, contradicting

υ
(
pl1, p

l
2

)
= 0.

Section 5 analysis and proofs
Proof of Proposition 1
Because pNT = pl (A)

∣∣
A=pNT

, it suffi ces to show that pl (A) is strictly decreasing

(increasing) if captive demand is strictly convex (strictly concave). Given A < pNT ,

the equilibrium condition is Θ
(
pl;A

)
=

1−G(pl−A)
g(pl−A)

− A = 0, making the dependence

on the parameter A explicit. Differentiate this equilibrium condition implicitly to get

dpl (A)

dA
= −ΘA

Θpl
= −

g′
(
pl − A

)
Θpl

1−G
(
pl − A

)
g (pl − A)2 .

But Θpl is strictly negative (by Condition 1) so dpl (A) /dA has the same sign as

g′
(
pl − A

)
, establishing the claim.
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Proof of Proposition 2
The profit ranking is established by the argument in the text. That argument

relies on Condition 1 to ensure that the two equilibria exist, but otherwise it does not

depend at all on demand curvature.

Consumer surplus. Given symmetry, it suffi ces to aggregate over consumers
y1 ≥ 0 with favorite product at Firm 1. Define EP (y1) as in the text, with EP

its average over y1 ≥ 0. It suffi ces to show EP
T
> EP

NT
= pNT . When targeting

is permitted, we have EP (y1) = pT if y1 > y∗, or EP (y1) = y1 + L
(
y1, p

T , A
)
if

y1 ∈ [0, y∗), where pT = y∗ + A and y∗ satisfies the equilibrium condition µ (y∗) = A

(possibly at y∗ =∞ if limy→∞m (y) = m > A). Because L
(
y1, p

T , A
)
≥ A (see (8)),

we have

EP
T

=

∫ ∞
0

EP (y)
g (y)

1−G (0)
dy ≥

∫ y∗

0

y
g (y)

1−G (0)
dy +

∫ ∞
y∗

y∗
g (y)

1−G (0)
dy + A

After integrating by parts this reduces to EP
T ≥ 1

1−G(0)

∫ y∗
0

1−G (y) dy + A.

Using Lemma 5(i) and the fact that pNT = µ (0), we have y∗ ≥
(
pNT − A

)
/ρ.

Then use Lemma 5(ii) to get EP
T ≥

∫ 1
ρ(pNT−A)

0

(
1− ρ y

pNT

)1/ρ

dy + A. Integrate to

get

EP
T ≥ pNT

1 + ρ
− pNT

1 + ρ

(
A

pNT

) 1+ρ
ρ

+ A

Writing α = A/pNT and using this bound, a suffi cient condition for EP
T−EPNT

> 0

is α− ρ
1+ρ
− 1

1+ρ
α
1+ρ
ρ > 0. Rearrange this condition as:

ρ < α

(
1− α1/ρ

1− α

)
(11)

Since α < 1, ρ < α suffi ces to ensure that 1−α1/ρ
1−α > 1. Thus we conclude that ρ < α

is suffi cient to ensure (11).

Lemma 5 Let µ (y) be the Mills ratio µ (y) = 1−G(y)
g(y)

. If captive demand 1 − G (y)

is ρ-convex on [0,∞), then for y ≥ 0, (i) µ (y) ≥ µ (0) − ρy, and (ii) 1 − G (y) ≥
(1−G (0))

(
1− ρ y

pNT

)1/ρ

.

Proof. To establish (i), note that the condition that d2

dy2
(1−G (y))ρ ≥ 0 can be

shown equivalent to µ′ (y) ≥ −ρ by direct computation. Recall that pNT = µ (0).
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Thus the hazard rate ν (y) = 1/µ (y) satisfies ν (y) ≤
(
pNT − ρy

)−1
. For (ii), note

that 1−G (y) = (1−G (0)) exp
(
−
∫ y

0
ν (y′) dy′

)
. Using the bound on ν (y), we have

−
∫ y

0
ν (y′) dy′ ≥ 1

ρ
ln pNT−ρy

pNT
, from which (ii) follows directly.

Proposition 8 If g′ (0) < 0, then if targeting costs are suffi ciently high (A ∈
(
Ā, pNT

)
for some Ā), every consumer would be strictly better off if targeting were banned. A

suffi cient condition for g′ (0) < 0 is independent tastes drawn from strictly logconcave

f (r) with at least three firms.

Proof of Proposition 8
First note that g′ (0) ≤ 0 and Condition 1 imply g′ (y) < 0 for all y > 0, and thus

dpl/dA < 0 for all A < pNT as shown in the proof of Proposition 1. As noted in

that proof, dpl/dA has the sign of g′ (y∗), where y∗ = pl (A) − A. Then because the
threshold consumer is y∗ = pl−A = 0 at A = pNT , the additional condition g′ (0) < 0

ensures that dpl/dA < 0 holds at A = pNT as well. The claim that g′ (0) < 0 is

satisfied with n ≥ 3 firms is proved in Lemma 1.

For A ≥ pNT , targeting is not employed and consumers receive their no-targeting

surplus. Thus it suffi ces to show that there is a neighborhood A ∈ (Ā, pNT ] over

which CS (y) is strictly increasing in A for all y. An increase in A unambigu-

ously improves consumer surplus of captive consumers since it reduces list prices,

so we need only show the result for contested consumers. As the consumer sur-

plus of contested consumers moves inversely to the welfare loss function, it suf-

fices to show that, for pNT − A suffi ciently small, L
(
y, pl (A) , A

)
is decreasing in

A for all y ∈ [0, y∗ (A)]. Because dL
(
y, pl, A

)
/dA is continuous in y and A, and

because y∗ (A) can be made arbitrarily close to 0 by choosing A suffi ciently close

to pNT , it suffi ces to show that dL
(
y, pl (A) , A

)
/dA

∣∣
y=0,A=pNT

< 0, that is, that

L
(
y, pl (A) , A

)
is strictly decreasing in A at A = pNT for consumers at the turf

boundary. That total derivative is dL/dA = ∂L/∂A+ ∂L/∂pl · dpl/dA. At y = 0, we

have L
(
0, pl, A

)
= A (a1 + a2) = 2A− A2

pl
since there are no social costs of misalloca-

tion, so the direct effect is ∂L/∂A|y=0,A=pNT = 2− 2A/pl
∣∣
A=pNT

= 0. For the indirect

effect, we have ∂L/∂pl
∣∣
y=0,A=pNT

=
(
A/pl

)2
∣∣∣
A=pNT

= 1. Thus we can conclude that

dL
(
y, pl (A) , A

)
/dA

∣∣
y=0,A=pNT

= dpl/dA
∣∣
A=pNT

< 0, as claimed.

Section 6 analysis and proofs
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Existence of a unique symmetric price competition equilibrium (PCE)

Recall our standing assumption that 1−G (y) is strictly logconcave, so the hazard

rate h (y) = g(y)
1−G(y)

is strictly increasing. Suppose firms anticipate an opt-in rate λ. As

noted in the text, any symmetric price competition equilibrium at list price p∗ must

satisfy the necessary condition Φ (p∗) = 0. We will show that the condition Φ (p) = 0

has a unique solution and is both necessary and suffi cient for an equilibrium.

Concave captive demand

Suppose captive demand is concave, so g′ (y) ≥ 0 on [0,∞). Note that Φ (p) =

λΦT (p) + (1− λ) ΦNT (p), where ΦT (p) = 1−G (p− A)−Ag (p− A) and ΦNT (p) =

1−G (0)−pg (0). Both ΦT (p) and ΦNT (p) are strictly decreasing, so Φ (p) is strictly

decreasing as well. Furthermore, we have ΦT

(
pT
)

= 0 and ΦNT

(
pNT

)
= 0, with

pT ≤ pNT by Proposition 1. This implies Φ (p) is strictly positive for p < pT and

strictly negative for p > pNT . Thus Φ (p) = 0 has a unique solution p∗, located on[
pT , pNT

]
.

To show suffi ciency, it suffi ces to show that p1 = p∗ maximizes Firm 1’s profit

when all other firms charge p∗. Write Firm 1’s marginal profit as

Θ (p1) :=
dΠ1

dp1

∣∣∣∣
p−1=p∗

= λΘT (p1) + (1− λ) ΘNT (p1)

where ΘT (p1) = 1 − G (p1 − A) − Ag (p1 − A) and ΘNT (p1) = 1 − G (p1 − p∗) −
p1g (p1 − p∗) are the marginal profits associated with opt-in and opt-out consumers,
respectively. By construction, Θ (p∗) = 0, and Θ (p1) is strictly decreasing (because

ΘT (p1) and ΘNT (p1) both are). Thus, Firm 1’s profit is maximized at p1 = p∗.

Convex captive demand

Now suppose captive demand is strictly convex, so g′ (y) < 0 on (0,∞). As above,

we seek to establish the existence of a unique symmetric PCE by showing (1) that

Φ (p) = 0 has a unique solution and (2) a firm’s profit function is single-peaked and

maximized at p∗ when all other firms charge p∗.

(1) A unique solution to Φ (p) = 0 exists.
By strict convexity, the no-targeting and unrestricted targeting list prices satisfy

pNT < pT . Because ΦT (p) and ΦNT (p) are both positive below pNT and both negative

above pT , Φ (p) = 0 has some solution on the interval
[
pNT , pT

]
and no solutions

outside this interval. Suppose Φ (p∗) = 0 is such a solution. To show uniqueness, it
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suffi ces to show Φ′ (p∗) < 0. Since Φ′NT (p∗) < 0 is immediate, showing Φ′T (p∗) < 0

will suffi ce. For this, write

ΦT (p) = (1−G (p− A)) (1− Ah (p− A)) and differentiate:

Φ′T (p) = −g (p− A) (1− Ah (p− A))− A (1−G (p− A))h′ (p− A)

= −h (p− A) ΦT (p)− A (1−G (p− A))h′ (p− A)

Evaluated at p∗, the first term is weakly negative because p∗ ≤ pT implies ΦT (p∗) ≥ 0,

and the second term is strictly negative by the monotonicity of the hazard rate.

(2) Profit is uniquely maximized at p1 = p∗ when all other firms charge p∗.
It suffi ces to consider Firm 1, whose marginal profit may be written Θ (p1) =

λΘT (p1) + (1− λ) ΘNT (p1) as above. Clearly p1 = p∗ is one solution to the first-

order condition Θ (p1) = 0. We will show that any solution p̂1 to Θ (p1) = 0 must

satisfy Θ′ (p̂1) < 0; this implies that Firm 1’s profit is strictly quasiconcave and

uniquely maximized at p1 = p∗.

First, we claim that Θ (p̂1) = 0 implies p̂1 < pT .

Proof Note that ΘNT (p∗) < 0 (because pNT is defined by 1−G (0)−pNTg (0) = 0,

and p∗ > pNT ). Because ΘNT (p1) crosses zero once, from above, and pT > p∗,

ΘNT (p1) < 0 for all p1 ≥ pT . Since ΘT (p1) is also negative above pT , we have

Θ (p1) < 0 for all p1 ≥ pT .

Next, regroup the terms in Firm 1’s marginal profit as:

Θ (p1) = λ (1−G (p1 − A))ZT (p1) + (1− λ) (1−G (p1 − p∗))ZNT (p1)

where ZT (p1) = 1− Ah (p1 − A) and ZNT (p1) = 1− p1h (p1 − p∗). Then,

Θ′ (p1) = [λ (1−G (p1 − A))Z ′T (p1) + λ (1−G (p1 − p∗))Z ′NT (p1)]−X (p1) , where

X (p1) = λg (p1 − A)ZT (p1) + (1− λ) g (p1 − p∗)ZNT (p1)

The first term is negative for any p1 because ZT (p1) and ZNT (p1) are strictly de-

creasing, so it will suffi ce to show X (p̂1) > 0 holds whenever Θ (p̂1) = 0. Manipulate
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X (p1) to get:

X (p1) = h (p1 − A) · λΘT (p1) + h (p1 − p∗) · (1− λ) ΘNT (p1)

= h (p1 − p∗) Θ (p1) + λ (h (p1 − A)− h (p1 − p∗)) ΘT (p1)

By conjecture, at p̂1 the first term drops out: X (p̂1) = λ (h (p̂1 − A)− h (p̂1 − p∗)) ΘT (p̂1).

Both terms in this remaining expression are strictly positive —the first by the monotonic-

ity of the hazard rate, and the second because we showed that p̂1 < pT . As claimed,

this establishes that Θ′ (p̂1) < 0 at any p̂1 satisfying the first-order condition Θ (p̂1) =

0.

Monotonicity of p(λ)

As elsewhere, we restrict attention to the cases where captive demand is either

strictly convex or strictly concave. (If captive demand is linear, it is easily seen that

p (λ) = pNT = pT .) Since p (λ) is defined implicitly by the condition Φ (p) = 0,

we have p′ (λ) = −Φλ/Φp|p=p∗ . In proving equilibrium uniqueness, we showed that

Φp|p=p∗ < 0. If demand is strictly convex, and λ ∈ (0, 1), the equilibrium price

p∗ ∈
(
pNT , pT

)
satisfies ΦT (p∗) > 0 > ΦNT (p∗), so Φλ|p=p∗ > 0, and thus p′ (λ) > 0.

The same argument applies with very slight adaptations at λ = 0 and λ = 1. If

demand is strictly concave, p∗ ∈
(
pT , pNT

)
, the argument above reverses, and so

p′ (λ) < 0.

All consumers can benefit from a nuisance cost on opt-in.

Suppose demand is strictly convex and there is an interior equilibrium (λ∗, p∗). To

ensure this equilibrium is stable, we also suppose the λ (p) curve crosses p (λ) from

below, as in Figure 1(a). Because λ (p) curve can be written p = ∆̄−1 (c (λ)), this

stability condition simplifies to c′ (λ∗) > p′ (λ∗) ∆̄′ (p∗).) By construction, c (λ∗) =

∆̄ (p∗), since the λ∗ consumer is indifferent between opting in or out.

Suppose the government implements a lower opt-in rate λ̂ < λ∗ by imposing

a nuisance cost τ on opt-in. The size of the nuisance cost must be such that λ̂

consumers are indifferent: c
(
λ̂
)

+ τ = ∆̄ (p̂), where p̂ = p
(
λ̂
)
. Thus, τ = ∆̄ (p̂) −

c
(
λ̂
)
. Consumers at λ ≥ λ∗ opt out before and after the nudge; these consumers

strictly benefit when list prices fall from p∗ to p̂. A consumer at λ < λ∗, with

privacy cost c (λ), opts in before and makes net payments (including privacy cost)

p∗ − ∆̄ (p∗) + c (λ) = (p∗ − c (λ∗)) + c (λ), using the equilibrium condition at the
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“star”prices. If this consumer also opts in after the nudge, she makes net payments

p̂− ∆̄ (p̂) + c (λ) + τ =
(
p̂− c

(
λ̂
))

+ c (λ), using the equilibrium at the new, “hat”

prices. Since she also has the option to switch to opting out after the nudge, this

consumer is made unambiguously better off if p̂ − c
(
λ̂
)
< p∗ − c (λ∗). So there is a

nudge that benefits all consumers if p
(
λ̂
)
− c
(
λ̂
)
< p (λ∗)− c (λ∗) for some λ̂ < λ∗.

Since p′ (λ∗) > c′ (λ∗) ensures this is true for all λ̂ suffi ciently close to λ∗, we have the

claim in the text.

Note that ∆̄′ (p) < 1, so the stability condition does not preclude the p′ (λ∗) >

c′ (λ∗) condition from being met.

Concave captive demand example

For the example in the text, the distribution of consumers on the Hotelling line

is F (x) = 7
4
x − 3

2
x2 for x ∈

[
0, 1

2

]
; symmetry about x = 1

2
may be used to find the

corresponding expression for x ∈
[

1
2
, 1
]
. Taking the point of view of the firm on the

left, captive demand may be computed from the relation 1−G (y) = F (x)|y=1−2x; thus

1−G (y) = 1
2
− 1

8
y− 3

8
y2 (for y ∈ [0, 1]). Using the relation p−A = y for the marginal

opt-in consomer, the equilibrium condition is (1− λ) (1−G (0)− (y + A) g (0)) +

λ (1−G (y)− Ag (y)) = 0. This simplifies to 1
2
− 1

8
A −

(
1
8

+ 3
4
Aλ
)
y − 3

8
λy2 = 0.

Taking the appropriate solution and using p = y+A yields the PCE list price p (λ) =√
4

3λ
+ 1

36λ2
+ A2 − 1

6λ
. Figure 2(b) plots p (λ) when the ad cost is A = 0.2.

Proofs of Propositions 3 and 4

Proof of Proposition 3
Part (ii) is proved in the text. The profit results in part (i) and Proposition 4 are

proved together in Lemma 6.

Lemma 6 A firm’s profit in an equilibrium under the opt-in policy satisfies ΠOI ∈
[ΠT ,ΠNT ]. Furthermore, ΠOI ∈ (ΠT ,ΠNT ) if the equilibrium is interior (λ∗ ∈ (0, 1)).

Proof. Start with the case of strictly convex captive demand.

If captive demand is strictly convex:

Let (λ∗, p∗) be an equilibrium under regime OI, with y∗ = p∗ − A. The result is
immediate if λ∗ = 0 or λ∗ = 1, so we focus on the case λ∗ ∈ (0, 1). Then the price

satisfies p∗ ∈
(
pNT , pT

)
and solves the equilibrium condition

(1− λ∗) (1−G (0)− (y∗ + A) g (0)) + λ∗ (1−G (y∗)− Ag (y∗)) = 0
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which may be rearranged as:

p∗ = pNT +
λ∗

1− λ∗
1−G (y∗)− Ag (y∗)

g (0)
(12)

Profit in this equilibrium is ΠOI = (1− λ∗) ΠO + λ∗ΠI , where ΠO = (1−G (0)) p∗

and ΠI = (1−G (p∗ − A)) p∗ +
∫ p∗−A

0
y g (y) dy are profits on opt-outs and opt-ins,

respectively. Use (12) and pNT = (1−G (0)) /g (0) to replace (1− λ∗) ΠO:

ΠOI = (1− λ∗) ΠNT + λ∗
(
pNT (1−G (y∗)− Ag (y∗)) + ΠI

)
With an eye toward showing ΠOI < ΠNT , define

Z (y) = pNT (1−G (y)− Ag (y)) + (1−G (y)) (y + A) +

∫ y

0

y′g (y′) dy′ − ΠNT

Then we have ΠOI = ΠNT + λ∗Z (y∗). To prove ΠOI < ΠNT , it suffi ces to show

that Z (y) is strictly negative for y ∈
(
0, pT − A

)
(since y∗ ∈

(
pNT − A, pT − A

)
and

λ∗ > 0). First, observe that Z (0) = 0, so it will suffi ce to show Z ′ (y) < 0 for all

y ∈
(
0, pT − A)

)
.

Z ′ (y) = (1−G (y)− Ag (y))− pNT (g (y) + Ag′ (y))

Strict logconcavity of 1−G (y) implies g′ (y) > − g(y)2

1−G(y)
, so

Z ′ (y) < (1−G (y)− Ag (y))− pNT
(
g (y)− Ag (y)2

1−G (y)

)

= (1−G (y)− Ag (y))

(
1− 1−G (0)

g (0)

g (y)

1−G (y)

)
Because the hazard rate g (y) / (1−G (y)) is strictly increasing, the first term is

strictly positive for y < pT − A and the second is strictly negative for y > 0, so

Z ′ (y) < 0 holds on
(
0, pT − A

)
as claimed. This establishes ΠOI < ΠNT .

To show that ΠOI > ΠT , note that the latter may be written ΠT = ΠNT +
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Z
(
pT − A

)
. Then

ΠT − ΠOI = Z
(
pT − A

)
− λ∗Z (y∗)

< λ∗
(
Z
(
pT − A

)
− Z (y∗)

)
< 0

where the sequence of inequalities follows because Z is strictly negative and strictly

decreasing, respectively.

If captive demand is weakly concave:

We take an entirely different approach in this case. Write Π (λ) for the PCE profit

with opt-in rate λ. Since ΠT = Π (1), ΠNT = Π (0), and ΠNT > ΠT , it suffi ces to

show that Π (λ) is strictly decreasing in λ. Without loss of generality, express this

profit from Firm 1’s point of view as Π (λ) = Π (p1, P−1, λ)|p1=p(λ), P−1=p(λ), where we

explicitly separate Firm 1’s list price from the common list price P−1 of its rivals,

and p (λ) is the PCE price. We have Π (p1, P−1, λ) = (1− λ) ΠO (p1, P−1) + λΠI (p1),

where ΠO (p1, P−1) = p1 (1−G (p1 − P−1)) is the profit on an opt-out consumer, and

ΠI (p1) = p1 (1−G (p1 − A)) +
∫ p1−A

0
y dG (y) is the profit on an opt-in. Note that

only ΠO (p1, P−1) depends on the rivals’list price. Then,

dΠ (λ)

dλ
=

[
∂Π (p1, P−1, λ)

∂λ
+
∂Π (p1, P−1, λ)

∂p1

p′ (λ) +
∂Π (p1, P−1, λ)

∂P−1

p′ (λ)

]
p1=p(λ), P−1=p(λ)

The middle term vanishes, since it includes Firm 1’s first-order condition for its profit-

maximizing price in the PCE. So,

dΠ (λ)

dλ
= − (ΠO (λ)− ΠI (λ)) + (1− λ) (g (0) p (λ) p′ (λ))

The first term is strictly negative, since opt-outs are more profitable than opt-ins, as

confirmed below:

ΠO (λ)− ΠI (λ) = p (λ) (G (p (λ))−G (0))−
∫ p(λ)−A

0

y dG (y)

=

∫ p(λ)−A

0

(p (λ)− y) dG (y) > 0

Then because p′ (λ) is negative if captive demand is concave (and strictly negative if
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captive demand is strictly concave), we have dΠ (λ) /dλ < 0, as claimed.

Proof of Proposition 4

Part (i) is proved in Lemma 6. The proof of part (ii) follows.

Preliminaries

Define the following: let ȳ = max
(
pNT ln

(
2pNT

A

)
, pNT − A

)
. Let

γρ (y) =
(
pNT − A− ρy

)(
1− ρ y

pNT

) 1−ρ
ρ

+
pNT

1 + ρ
− pNT

1 + ρ

(
1− ρ y

pNT

) 1+ρ
ρ

+ A, and

γ0 (y) = lim
ρ→0

γρ (y) = pNT + A
(

1− e−y/pNT
)

Noting that γρ (y) converges uniformly to γ0 (y) for y ∈
[
pNT − A, ȳ

]
, choose

ρ1 such that
∣∣γρ (y)− γ0 (y)

∣∣ < A
2

(
1− e−(pNT−A)/pNT

)
holds for all ρ ≤ ρ1 and

y ∈
[
pNT − A, ȳ

]
. (The righthand side is strictly positive because A < pNT .) Let

ρ2 = 1
2

A
pNT−A , and set ρ̄ = min (ρ1, ρ2). Suppose that captive demand is ρ̄-convex.

Let (λ∗, p∗) be an equilibrium under regime OI, when opt-in is permitted.

Special cases: all consumers opt in, or all consumers opt out.

If λ∗ = 1, then all consumers may be targeted, and the proof of Proposition 2

applies (a fortiori, because we now have privacy costs that are avoided under regime

NT). If λ∗ = 0, then no consumers opt in, and the OI and NT outcomes are identical.

Interior equilibrium with opt-in

Henceforth, assume the regime OI equilibrium is interior, λ∗ ∈ (0, 1). Then the

list price p∗ ∈
(
pNT , pT

)
satisfies the equilibrium condition:

(1− λ∗) (1−G (0)− p∗g (0)) + λ (1−G (p∗ − A)− Ag (p∗ − A)) = 0

Using pNT = (1−G (0)) /g (0), this equilibrium condition may be rearranged as:

(1− λ∗)
(
p∗ − pNT

)
= λ

pNT

1−G (0)
(1−G (y∗)− Ag (y∗)) (13)

Recast the consumer surplus comparison in terms of favorite-equivalent prices

Some consumers bear privacy costs in the OI equilibrium, but none do under

regime NT. Therefore, showing that consumers also face a higher average favorite-

equivalent price under OI than under NT is suffi cient to prove the claim of the
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proposition. So the goal is to establish EP
OI

> EP
NT

= pNT , where EP
OI

=

(1− λ∗)EPO
+λ∗EP

I
, where EP

O
= p∗ and EP

I
are the average favorite-equivalent

prices in the OI equilibrium for consumers who opt out or in, respectively.

Claim 1: EP
OI
> EP

NT
holds if y∗ ≥ ȳ.

Because EP
O

= p∗ > EP
NT

= pNT , it suffi ces to establish that EP
I ≥ pNT . By

the same bounding argument as in Proposition 2, the expected favorite-equivalent

price for consumers who opt in satisfies:

EP
I ≥

∫ y∗

0

1−G (y)

1−G (0)
dy + A ≥ pNT

1 + ρ̄
− pNT

1 + ρ̄

(
1− ρ y∗

pNT

) 1+ρ
ρ

+ A

≥ pNT

1 + ρ̄
− pNT

1 + ρ̄
e−y

∗/pNT + A

≥
pNT − A

2

1 + ρ̄
+ A

≥ pNT

The first step applies Then use Lemma 5.ii, then integrates. The second step

uses the fact that (1− ρx)
1+ρ
ρ < (1− ρx)

1
ρ < e−x for x > 0. The third step uses

y∗ ≥ ȳ ≥ pNT ln
(

2pNT

A

)
, and the final step uses ρ̄ ≤ ρ2.

Claim 2: EP
OI
> EP

NT
holds if y∗ ≤ ȳ.

Use (13) to write (1− λ∗)EPO
= λ pNT

1−G(0)
(1−G (y∗)− Ag (y∗)) + (1− λ) pNT .

Substitute this into EP
OI
to establish that EP

OI
> EP

NT
is equivalent to the

inequality
pNT

1−G (0)
(1−G (y∗)− Ag (y∗)) + EP

I
> pNT

and (using the bound on EP
I
from Claim 1) a suffi cient condition is γ (y∗) > pNT ,

where

γ (y∗) :=
pNT

1−G (0)
(1−G (y∗)− Ag (y∗)) +

∫ y∗

0

1−G (y)

1−G (0)
dy + A

But by applying Lemma 5, we have γ (y∗) ≥ γρ̄ (y∗). (For the first term, note that

1− G (y∗)− Ag (y∗) = (1−G (y∗))
(

1− A
µ(y∗)

)
, apply both parts of the lemma, and
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simplify.) Then by the construction of ρ̄, we have

γ (y∗) > γ0 (y∗)−A
2

(
1− e−(pNT−A)/pNT

)
≥ γ0

(
pNT − A

)
−A

2

(
1− e−(pNT−A)/pNT

)
> pNT

as claimed, where the middle step follows because p∗ ≥ pNT and so y∗ ≥ pNT − A.

Summary

Claims 1 and 2 establish that if captive demand is ρ̄-convex, then at any interior

equilibrium under regime OI, EP
OI

> EP
NT

holds, and therefore that consumer

surplus is lower under regime OI than it would be under regime NT.
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