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Abstract
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1 Introduction

Imperfect competition distorts market allocations by raising the equilibrium price above

marginal cost. The size of the distortion depends upon the industry demand curve and

the number of competing Þrms. We quantify this distortion according to various surplus

benchmarks, as a function of the number of competitors and the curvature of the demand

curve for Cournot interaction. We show that the fraction of potential (Þrst-best) social

surplus captured by producers increases as demand becomes more concave. We also provide

bounds on consumer surplus and deadweight loss which depend on (potentially) observable

magnitudes, such as producer surplus. These bounds depend on two parameters that measure

the generalized concavity and convexity of demand.

The paper complements three bodies of literature on imperfect competition. The Þrst ad-

dresses market performance under imperfect competition, and traces its lineage back through

Mankiw and Whinston (1986), through Spence (1976) and Dixit and Stiglitz (1977), and ul-

timately to Chamberlin (1933). The emphasis has been on the long-run equilibrium, with

the number of Þrms used to measure market performance, but there has been no attempt

to quantify deadweight loss. By contrast, our work is a short-run analysis, with the number

of Þrms Þxed. We consider the size of the various surpluses reaped (producer surplus and

consumer surplus) and unreaped (deadweight loss) in the market.

The second literature concerns estimation of welfare loss due to market power, and goes

back to Harberger�s (1954) provocative study that estimated monopoly deadweight loss as

0.1% of GNP. This famous study of distortionary �triangles� has been criticized in several

respects, including the use of the proÞt data, the assumptions of linear demand and unit

elasticity of demand for all industries. Subsequent studies (also criticized heavily) have used

proÞt and cost data differently, and typically have assumed linear demand or a constant

elasticity. Cowling and Mueller (1978) have suggested that welfare loss could be up to 14%

of GNP. We do not further investigate the use of proÞt data, but we do specify a consistent

theoretical model that starts with the equilibrium oligopoly pricing condition and uses it to

derive bounds on deadweight loss that depend on the curvature of demand.

The third complementary body of literature uses extended concavity concepts to estab-

lish equilibrium existence and uniqueness in the Cournot model. This literature goes back
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through Novshek (1985) to McManus (1964). Most recently, Deneckere and Kovenock (1999)

have synthesized previous results and recast them in terms of demand properties.

The present analysis uses the concept of ρ-concavity that was introduced into economics

by Caplin and Nalebuff (1991a) and applied to (Bertrand) oligopoly in Caplin and Nalebuff

(1991b). The larger is ρ, the �more concave� the demand function. To obtain a tighter

characterization of demand curvature we also use the parallel concept of ρ-convexity whereby

the lower ρ the �more convex� is demand.

Section 2 presents a general background to ρ-concavity and ρ-convexity and delivers

relations between functions and their inverses. Section 3 constitutes the core of the paper.

For n Þrms in a Cournot oligopoly and an observed equilibrium price and quantity, we Þrst

determine bounds on the actual demand curve given that it must lie between two curvature

bounds. These bounds on the demand function then determine the bounds on several surplus

measures, such as consumer surplus, deadweight loss, and the fraction of producer surplus in

the total potential surplus (perfectly competitive benchmark). Ratio forms (and often tighter

bounds) are given for the symmetric cost case, and intuition is then provided for ρ-linear

demands. Section 4 concludes with comments on the welfare costs of excessive entry.

2 Demand curvature

The degree of concavity of a function can be parameterized using the concept of ρ-concavity

as explained and applied in Caplin and Nalebuff (1991a and b). We also use the parallel

concept of ρ-convexity to parameterize the degree of convexity of a function. We show that

any demand function is both ρ0-concave and ρ00-convex.

Definition 1 Consider a strictly positive function D̃ with a convex domain B ⊆ <+.

For ρ 6= 0, D̃ is ρ-concave if, for all p0, p1 ∈ B,

D̃(pλ) ≥
h
(1− λ)D̃(p0)

ρ + λD̃(p1)
ρ
i1/ρ

, 0 ≤ λ ≤ 1, (1)

where pλ = (1− λ)p0 + λp1. For ρ = 0, D̃ is 0-concave if

ln D̃(pλ) ≥ (1− λ) ln D̃(p0) + λ ln D̃(p1), 0 ≤ λ ≤ 1. (2)

A ρ-convex function is deÞned analogously by reversing the inequalities in (1) and (2).
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The larger is ρ, the more stringent the concavity restriction: if D̃ is ρ-concave, it is also

ρ0-concave for all ρ0 < ρ. We refer to one function as �more concave� than another when its

ρ value is higher. For ρ-convex functions, the smaller is ρ, the more stringent the convexity

restriction. Hence if D̃ is ρ-convex, it is also ρ
00
-convex for all ρ

00
> ρ. A logconvex function

(ρ = 0) is also a convex function (ρ = 1), which in turn is also quasiconvex (ρ = ∞).

Claim 1 Consider a strictly positive and decreasing function, D with a convex domain B ⊆
<+. There is a pair of values in the extended real line, ρ0 and ρ

00
, such that D is ρ0-concave

and ρ
00
-convex. If D is ρ0-concave and ρ

00
-convex, then ρ0 ≤ ρ00

.

Proof. The Þrst part follows since decreasing functions are both quasiconvex and quasi-

concave. Second, suppose instead that ρ0 > ρ
00
. Then D is ρ

00
-concave and ρ0-convex. But

then (for ρ0 6= 0 and ρ
00 6= 0) Dρ

00
and Dρ

0
are linear, which is clearly impossible. A similar

argument applies if either ρ0 or ρ
00
is zero.

The ρ-concavity properties of D also imply restrictions on its inverse.1

Proposition 1 Let D be strictly positive and decreasing on its (convex) domain, B. Let P

be the inverse of D, with P deÞned over A which is the range of D. Assume both D and P

are twice continuously differentiable. Then

−P 00(Q)Q
P 0(Q)

≤ (1− ρ) iff [1− ρ](D0)2 −D00D ≥ 0 iff D is ρ-concave.

Proof. IfD is ρ-concave, thenDρ/ρ is concave (lnD for ρ = 0). Then D0
D
Dρ is decreasing,

or

(ρ− 1)(D0)2 +D00D ≤ 0 (3)

Now, set D(p) = Q, so that D0(p) = 1/P 0(Q) and D00(p) = −P 00(Q)/[P 0(Q)]3. Replacing

these expressions in condition (3) gives the condition P 00(Q)Q+ (1− ρ)P 0(Q) ≤ 0.

We explore the implications of this result in the context of Cournot competition in the

next section (and we justify the notation D and P for the functions at that point).2

1The analogous statment relating P (Q) and D(p) is −D”(p)p
D0(p) ≤ (1− ρ) iff [1− ρ](P 0)2−P”P ≥ 0 iff P is

ρ-concave. Corresponding statments for ρ-convexity are also readily written.
2The condition on P concerns the slope elasticity and is analogous to measures of risk aversion.
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3 Cournot equilibrium

Let there be n Þrms producing a homogeneous product. Let demand be given by D(p),

where D is a strictly decreasing and twice continuously differentiable function on [0, p], and

is zero on [p,∞). Further suppose that D0 < 0 on [0, p]. Hence inverse demand, P (Q), is

twice continuously differentiable on [0, D(0)], where Q is total output.

Let Firm i�s marginal cost be constant at ci (< p = P (0)) per unit, label Þrms so

that c1 ≤ c2 ≤ ... ≤ cn, and assume that all Þrms are active in equilibrium (cn < pc in

equilibrium suffices, where pc is the Cournot price). The individual Þrm�s proÞt function is

πi = [P (Q)− ci] qi, where qi is the individual Þrm�s output, i = 1, ..., n. Below we relate the

direct demand curve to the inverse one to focus on the relevant ρ-curvature properties, but

for now we continue in the standard manner. The standard Þrst-order conditions are

P 0(Q)qi + P (Q) = ci i = 1, ..., n. (4)

Summing up these conditions yields:

P 0(Q)Q+ nP (Q) = nc̄, (5)

where c̄ = 1
n

Pn
i=1 ci is mean unit production cost. It is readily shown that the condition:

P 00(Q)Q+ 2P 0(Q) ≤ 0 (6)

ensures both existence (since the proÞt functions are then concave) and uniqueness (since

the LHS of (5) then slopes down for n > 13) of equilibrium.4 Deneckere and Kovenock (1999,

Theorem 1) give this condition (with a strict inequality) as �the Cournot equilibrium exis-

tence result with the least restrictive conditions on demand known to us.� From Proposition

1 we have the counterpart condition on direct demand (see also Deneckere and Kovenock,

1999): (−1)-concavity of D ensures the existence and uniqueness of a Cournot equilibrium.

We now follow through with the D-version of Cournot pricing. From (5), the equilibrium

is P 0(Q)Q+ n[P (Q)− c̄] = 0, or, in terms of the direct demand function,

n(pc − c̄) =
−D(pc)

D0(pc)
(7)

3For monopoly, a strict inequality in (6) guarantees uniqueness. From Proposition 1, the inequality is
strict as long as D is ρ-concave for some ρ > −1, no matter how close, which is what we assume in the
bounds analysis below.

4The referee noted that the weaker condition of −(1/n)-concavity of P (Q) − c ensures existence and
uniqueness.
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This version of Cournot pricing is important below. We restrict ourselves to ρ0 > −1, and

the surplus bounds depend on the values of ρ0 and ρ00 that bound demand curvature. For

what follows, let PS =
Pn

i=1[pc − ci]qi denote producer surplus at the Cournot equilibrium,
and CS denote consumer surplus. It is helpful to use a benchmark of �mean-cost� industry

proÞtMPS = (pc − c̄)Q which is the proÞt that would be earned in the industry if the same
total output, Q, were produced, and each Þrm had the same (mean) cost, c̄.

Lemma 1 Consider a Cournot oligopoly with n Þrms producing at constant (but different)

marginal cost. Then MPS ≤ PS. This holds with equality when marginal costs are equal.

Proof. Letting q̄ = Q/n be average output, (4) and (5) imply

qi > q̄ ⇔ ci < c̄ : (8)

a Þrm produces above average output if and only if its cost is below the mean. We need to

show that MPS = D(pc)[pc− c̄] ≤ Pn
i=1[p

c− ci]qi = PS, or
Pn

i=1 qi[c̄− ci] ≥ 0. SubtractingPn
i=1 q̄[c̄ − ci] (= 0) from the L.H.S. of the last inequality yields

Pn
i=1[qi − q̄][c̄ − ci] ≥ 0,

which is necessarily true by property (8).

We use MPS extensively below. An alternative interpretation of MPS comes from

noting that MPS = −TIR
nη
, where TIR is total industry revenue (pcQ) and η is the price

elasticity of demand. This derives from writing (7) as the Lerner rule, p
c−c̄
pc

= −1
η

1
n
.

4 Surplus bounds

We now derive bounds on consumer surplus and deadweight loss. We Þrst prove a key propo-

sition that restricts where the demand function may lie if we know the Cournot equilibrium

price and quantity and the bounds on demand curvature ρ00 ≥ ρ0.

Proposition 2 Let D be ρ0-concave and ρ00-convex, with ρ00 ≥ ρ0.Then

D(pc)

·
1 +

ρ00

n

(pc − p)
(pc − c̄)

¸1/ρ00

≤ D(p) ≤ D(pc)

·
1 +

ρ0

n

(pc − p)
(pc − c̄)

¸1/ρ0

if neither ρ0 nor ρ00 is zero. If one is zero, the appropriate bound is D(pc) exp
h

1
n

(pc−p)
(pc−c̄)

i
.
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Proof. Suppose that D is ρ0-concave, with ρ0 > 0 so that

Dρ0
(p) ≤ Dρ0

(pc) + ρ0Dρ0
(pc)

D0(pc)
D(pc)

[p− pc] (9)

which says simply that a concave function lies below its tangent (at pc), where pc is the

Cournot equilibrium price. Substituting in from the oligopoly equilibrium condition (7) and

raising both sides to the power 1/ρ0 yields:

D(p) ≤ D(pc)

·
1 +

ρ0

n

(pc − p)
(pc − c̄)

¸1/ρ0

. (10)

Notice that the same expression applies for ρ0 < 0 (since the inequality in (9) is reversed but

then raising both sides to the power 1/ρ0 < 0 then again reverses the inequality). The case

ρ0 = 0 is attained by taking the appropriate limit of the right-hand side of (10) to give

D(p) ≤ D(pc) exp

·
1

n

(pc − p)
(pc − c̄)

¸
. (11)

The lower bounds follow from similar arguments using ρ00 with the inequalities reversed.

The proposition Þrst uses the restriction that the demand function must lie between two

ρ−linear functions. Given an equilibrium price and industry output, there is an inÞnite set

of ρ−linear functions that go through this point and that could be used to bound demand.
The oligopoly Þrst-order condition ties down the bounding ρ−linear demand function as the
tangent to demand at the equilibrium point.

Proposition 2 provides bounds on output restriction due to imperfect competition. Under

symmetry (ci = c̄), the ratio of competitive to Cournot output is D(c̄)/D(pc) and is bounded

above by
h
1 + ρ0

n

i1/ρ0

(or exp 1
n
when ρ = 0). For monopoly, output is cut back by at most

one half for concave demand, and 1 − 1
e
for a logconcave demand. Under oligopoly, the

numbers are 1
n+1

and 1− e−1/n. We now turn to surplus analysis.

Proposition 3 Let D be ρ0-concave and ρ00-convex, with ρ00 ≥ ρ0 > −1. Then

MPS
n

ρ00 + 1
≤ CS ≤MPS n

ρ0 + 1
.

Proof. Consumer surplus is CS =
R∞
pc
D(p)dp.When ρ0 6= 0, the upper bound in Propo-

sition 2 is D(p) ≤ D(pc)
h
1 + ρ0

n
(pc−p)
(pc−c̄)

i1/ρ0

. For ρ0 > 0, the expression on the right has an
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intercept, α, that satisÞes 1 + ρ0
n

(pc−α)
(pc−c̄) = 0. For ρ0 < 0, this goes to zero as p goes to in-

Þnity, and deÞne α as inÞnity in this case. Hence CS ≤ R α
pc
D(pc)

h
1 + ρ0

n
(pc−p)
(pc−c̄)

i1/ρ0

dp. The

assumption that ρ0 > −1 ensures that this integral is well-deÞned. Thus

CS ≤
"
−nD(pc)(pc − c̄)

1 + ρ0

·
1 +

ρ0

n

(pc − p)
(pc − c̄)

¸1+1/ρ0#α
pc

For ρ0 > 0, the anti-derivative term is zero at p = α by deÞnition, while for ρ0 ∈ (−1, 0), the

anti-derivative term goes to zero as p goes to inÞnity. Hence we have CS ≤ MPS n
1+ρ0 . In

a similar fashion, for ρ0 = 0 we have CS ≤ R ∞
pc
D(pc) exp

h
1
n
pc−p
pc−c̄

i
dp = nMPS. Analogous

arguments with reversed inequalities yield the lower bound.

From Lemma 1, we can write a looser upper bound as CS ≤ nPS
ρ0+1

; and hence we can

determine a bound on the distribution of surplus as CS
CS+PS

≤ n
n+ρ0+1

. For symmetric costs,

we can also Þnd an analogous lower bound:

Corollary 1 Let costs be symmetric and D be ρ0-concave and ρ00-convex, with ρ00 ≥ ρ0 > −1.

Then5
n

n+ ρ00 + 1
≤ CS

CS + PS
≤ n

n+ ρ0 + 1
.

The bound expression is an decreasing function of the concavity-convexity index ρ, so

that the consumer share in social surplus is smaller for more concave demand. The intuition

is best captured by looking at ρ-linear demands. A useful way to parameterize ρ-linearity is

D(p) = K[1 + ρ(a − bp)]1/ρ, for p ∈ [0, p], while D(p) = 0 for p ≥ p, where p = 1
ρb

(1 + ρa)

for ρ > 0 and p = ∞ otherwise. We impose K > 0, b > 0, a > 0, and 1 + ρa ≥ 0 for D to be

a demand function. These conditions ensure that demand is positive and strictly decreasing

on [0, p], and that p > 0 for ρ > 0. Keeping K, a, and b constant, we can generate a set of

ρ-linear functions for ρ ∈ [−1
a
,∞). All demand curves pass through the price-quantity pair

(a
b
, K). At this point, the elasticity of demand is −a for any ρ. For any given n and c, this

means that we can set a = bc + 1
n
so that the equilibrium price is always a

b
independently

of the value of ρ.6 Equilibrium quantity, K, and producer surplus, K
¡
a
b
− c¢, are then also

independent of demand curvature.
5Under cost symmetry, with a concave demand, ρ0 = 1 and consumer surplus is at most n/2 of producer

surplus. It reaches this upper bound for a linear function, ρ0 = ρ00 = 1.
6This follows from writing (7) as p

c−c
pc = −1

η
1
n and substituting in the parameter values given.
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Since producer surplus is tied down, its share in social surplus depends on how consumer

surplus varies with ρ. With price held Þxed at a
b
, consumer surplus depends upon how

demand changes with ρ for prices above a
b
. Differentiating the log of the parameterized

demand function with respect to ρ gives 1
ρ2

£
x

1+x
− ln(1 + x)

¤
where x = ρ(a − bp). This

expression is zero when x = 0, increasing for negative values of x, and decreasing for positive

values. It is therefore always negative. This means that consumer surplus falls as demand

becomes more concave, and so the share of producer surplus in total surplus rises. Intuitively,

think of a demand curve that bows in more when demand is more concave.

Hence with ρ-linear functions, a more concave function (larger ρ) delivers a lower ratio

of consumer to producer surplus. The argument extends to functions that are not ρ-linear:

consider a ρ-convex demand function, and compare to another demand function sufficiently

more concave that it is ρ-concave. Then CS/PS is smaller for the more concave one. In this

sense, CS/PS is lower the more concave the demand function, and the argument holds be-

cause the bounds decrease with ρ. With this justiÞcation we henceforth analyze comparative

static properties by considering the bound expressions.

Our measure of deadweight loss uses the cost of the most efficient Þrm (see also Daskin,

1991). At the optimum, this Þrm serves the whole market at unit cost, c1.

Proposition 4 Let D be ρ0-concave and ρ00-convex, with ρ00 ≥ ρ0 > −1. Then"µ
1 + ρ00

q1

Q

¶1+ 1
ρ00
− 1

#
n

ρ00 + 1
MPS−PS ≤ DWL ≤

"µ
1 + ρ0

q1

Q

¶1+ 1
ρ0
− 1

#
n

ρ0 + 1
MPS−PS

if neither ρ0 nor ρ00 is zero. If one is zero, the appropriate bound is
£
neq1/Q − n¤

MPS−PS.

Proof. Deadweight loss at a Cournot equilibrium isDWL =
R pc
c1
D(p)dp−PS. For ρ0 6= 0,

Proposition 2 implies

DWL ≤
Z pc

c1

D(pc)

·
1 +

ρ0

n

(pc − p)
(pc − c̄)

¸1/ρ0

dp− PS.

Evaluating the expression on the RHS gives the desired upper bound after noting that

nD(pc)(pc − c̄) = MPS and pc−c1

n(pc−c̄) = q1

Q
. A similar argument holds for ρ0 = 0 using

DWL ≤ R pc
c1
D(pc) exp

h
1
n
pc−p
pc−c̄

i
dp−PS. The lower bounds follow from analogous arguments

with the inequalities reversed.
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From Lemma 1, an upper bound follows as DWL
PS

≤
h
(1 + ρ0)1+ 1

ρ0 − 1
i

n
ρ0+1

−1. Under cost

symmetry, we can write the upper bound as n+ρ0
ρ0+1

³
1 + ρ0

n

´ 1
ρ0 − n

ρ0+1
− 1 with the lower bound

given by an analogous expression evaluated at ρ00. These bounds are decreasing in ρ. To see

this note that for any two values ρ0 and ρ00 such that ρ0 < ρ00, there exists a demand function

which is both ρ0-concave and ρ00-convex. (For example, a ρ-linear decreasing function with

ρ ∈ (ρ0, ρ00)). The bounds imply that the bound expression evaluated at ρ00 must be less that

the bound expression evaluated at ρ0.

Our next result combines the Þndings above for symmetric costs. Let TS = DWL +

CS + PS denote total potential surplus available in the market. For ease of comparison,

we present the results in terms of TS/PS, bearing in mind that we are interested in the

inverse of this ratio (which indicates how much producers are able to extract of the total

gains available). More producers imply a lower price and producer surplus, so that TS/PS

increases with n, which is corroborated by the bounds below.

Proposition 5 Let D be ρ0-concave and ρ00-convex, with ρ00 ≥ ρ0 > −1; let costs be equal.

Then
n+ ρ00

ρ00 + 1

µ
1 +

ρ00

n

¶ 1
ρ00
≤ TS

PS
≤ n+ ρ0

ρ0 + 1

µ
1 +

ρ0

n

¶ 1
ρ0

if neither ρ0 nor ρ00 is zero. If one is zero, the appropriate bound is ne1/n.

Since each bound is the sum of those following Propositions 3 and 4, they are decreasing

in ρ. The intuition again follows from the ρ-linear parameterization after Corollary 1. In-

creasing ρ tightens the demand curve around its anchor price, and in the limit as ρ goes to

inÞnity, it becomes a rectangular (step) demand where consumers inelastically buy K units

up to a price a
b
. This illustration underlies the fact that the limit of the upper bound in the

proposition as ρ0 goes to inÞnity is 1, and producers extract the full potential surplus. As

was the case for the share of producer surplus in social surplus, the fraction of the Þrst-best

total surplus captured by producers is larger if demand is more concave.

We now study how market efficiency is affected by demand curvature. In line with

standard welfare analysis, we relate deadweight loss to the total potential surplus that may

be generated by the market. Equivalently we consider the ratio of the total potential surplus
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to the social surplus generated by the market equilibrium. For the symmetric case, using

Corollary 1 and Proposition 5 we have

(n+ ρ00) (ρ0 + 1)

(ρ00 + 1)(n+ ρ0 + 1)

µ
1 +

ρ00

n

¶ 1
ρ00
≤ TS

PS + CS
≤ (n+ ρ0) (ρ00 + 1)

(ρ0 + 1)(n+ ρ00 + 1)

µ
1 +

ρ0

n

¶ 1
ρ0

(12)

Further insight can be gained by considering ρ-linear functions for which ρ00 = ρ0 = ρ. We

can then determine the impact of changing demand curvature on the relative deadweight loss,
DWL
TS

(the terminology follows Tirole, 1988). Clearly relative deadweight loss moves the same

way as TS
PS+CS

. For the special case of isoelastic demands (see Tirole, 1988, Exercise 1.4), it

can be readily shown that the more elastic the demand, the larger the relative deadweight

loss under monopoly (given an isoelastic demand). In our setting, this translates to relative

deadweight loss increasing for ρ ∈ (−1, 0). However, the deadweight loss disappears as we

approach the limit of rectangular demand of our earlier parameterization of ρ-linear demand,

suggesting that an increase in ρ necessarily decreases relative deadweight loss for large values

of ρ. The next proposition clariÞes how relative deadweight loss depends on ρ.

Proposition 6 Let D be ρ-linear and costs be symmetric. Then TS
PS+CS

= n+ρ
(n+ρ+1)

¡
1 + ρ

n

¢ 1
ρ

is quasiconcave in ρ, increasing for ρ ∈ (−1, 0) and decreasing for ρ large enough.

Proof. First note that ln
¡

TS
PS+CS

¢ ≡ S(ρ) = ln(n + ρ) − ln(n + ρ + 1) + 1
ρ

ln
¡
1 + ρ

n

¢
.

Hence S 0(ρ) = 1
ρ2

1
(n+ρ)(n+ρ+1)

©
ρ(n+ 2ρ+ 1)− (n+ ρ)(n+ ρ+ 1) ln

¡
1 + ρ

n

¢ª
.

Except for possibly at ρ = 0, this expression has the sign of the term in curly brackets

(since ρ > −1 and n ≥ 1), so deÞne this term as T (ρ),

T (ρ) = ρ(n+ 2ρ+ 1)− (n+ ρ)(n+ ρ+ 1) ln
³

1 +
ρ

n

´
, (13)

which is a continuous function of ρ. S is increasing when T is positive, and decreasing when

T is negative. We show that T is Þrst positive and then negative, so that S (and therefore

TS/ (PS + CS)) is quasiconcave. The rest of the proof uses three steps:

(i) T is negative for ρ ≥ (e2 − 1)n;

(ii) for n ≥ 2, T has a local minimum at ρ = 0, at which point T is zero (the case n = 1

is treated at the end).

(iii) the second derivative of T is decreasing in ρ for n ≥ 2.

11



Coupled with (ii), (iii) proves that T must be positive for ρ < 0: if it were negative at

some ρ < 0 then it would have to be concave at some point in order to later have a local

minimum at ρ = 0, but this contradicts (iii). Finally, from (i), T is negative for ρ large

enough, but, from (ii) it has a local minimum at ρ = 0. To become negative, it must turn

from convex to concave, but by (iii) it cannot become convex again after it has become

negative, and so there is a unique value of ρ > 0 for which T crosses the line T = 0.

For n = 1, T 000(ρ) has the sign of −1−2ρ, so that T 00 is increasing for ρ ∈ (−1,−1
2
) and it

is decreasing for ρ > −1
2
. Since lim

ρ→−1
T (ρ) = 0, lim

ρ→−1
T 0(ρ) = ∞, and lim

ρ→−1
T 00(ρ) = ∞, T (ρ) is

positive, increasing, and concave at Þrst: it then becomes convex before falling to 0 at ρ = 0,

whereafter it is concave and so falling since this is an inßection point. It is thus positive for

ρ ∈ (−1, 0) and negative for ρ > 0.

The intuition follows our earlier parameterization of ρ-linear demand, whereby we hold

producer surplus Þxed as we increase ρ. For ρ negative, consumer surplus is very large

relative to deadweight loss (it tends to inÞnity as ρ goes to −1), and bowing in the demand

function reduces consumer surplus more than it reduces deadweight loss. This increases

relative deadweight loss. For large enough ρ, consumer surplus and deadweight loss become

more similar in size and total surplus consists mostly of producer surplus. Because PS

remains unchanged, the joint reduction in consumer surplus and deadweight loss leads to a

drop in relative deadweight loss.

5 Conclusions

We have presented a set of surplus bounds for Cournot competition. Different surpluses are

important in different contexts. To measure monopoly deadweight loss (the harm inßicted by

market power), our results on deadweight loss bounds as a fraction of industry proÞts mean

that losses can be inferred from observation of industry proÞts and tight demand estimates.

Whether a monopoly Þrm enters a market depends on its proÞt, but the socially optimal

entry decision depends on total surplus generated. When demand is very concave (ρ0 high),

the Þrm�s incentives are aligned with the optimum and entry is close to optimal. For a

very convex demand (ρ00 low) much of the surplus generated remains uncaptured and entry

decisions may be far from optimal.
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These surplus comparisons are also important under oligopoly. A Þrm enters the market

if it earns a positive proÞt. The optimal decision depends on the incremental total surplus.

An extension of the present research is to quantify the severity in welfare terms of the over-

entry problem identiÞed by Mankiw and Whinston (1986). Does it become more or less

severe as ρ0 increases or ρ00 decreases?7 When ρ0 is large (demand is very concave), Þrms

capture almost all of the total surplus. An extra Þrm will not reduce price much and so its

social value is small. Nevertheless, it may still earn substantial proÞt by simply attracting

customers from rival Þrms (the business stealing effect). This suggests that overentry may

indeed be a serious problem for ρ0 large, even though there is little deadweight loss for a

Þxed number of Þrms, so care is needed in interpreting our welfare results.

Curvature properties are important elsewhere in economics. Two examples are cost

functions, for which curvature measures returns to scale, and utility functions under risk

where curvature measures risk aversion.
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